Metamath Proof Explorer


Theorem cnperf

Description: The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis recld2.1
|- J = ( TopOpen ` CCfld )
Assertion cnperf
|- J e. Perf

Proof

Step Hyp Ref Expression
1 recld2.1
 |-  J = ( TopOpen ` CCfld )
2 1 cnfldtopon
 |-  J e. ( TopOn ` CC )
3 2 toponunii
 |-  CC = U. J
4 3 restid
 |-  ( J e. ( TopOn ` CC ) -> ( J |`t CC ) = J )
5 2 4 ax-mp
 |-  ( J |`t CC ) = J
6 recn
 |-  ( y e. RR -> y e. CC )
7 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
8 6 7 sylan2
 |-  ( ( x e. CC /\ y e. RR ) -> ( x + y ) e. CC )
9 ssid
 |-  CC C_ CC
10 1 8 9 reperflem
 |-  ( J |`t CC ) e. Perf
11 5 10 eqeltrri
 |-  J e. Perf