Metamath Proof Explorer


Theorem cnprcl2

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnprcl2
|- ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> P e. X )

Proof

Step Hyp Ref Expression
1 eqid
 |-  U. J = U. J
2 1 cnprcl
 |-  ( F e. ( ( J CnP K ) ` P ) -> P e. U. J )
3 2 adantl
 |-  ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> P e. U. J )
4 toponuni
 |-  ( J e. ( TopOn ` X ) -> X = U. J )
5 4 adantr
 |-  ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> X = U. J )
6 3 5 eleqtrrd
 |-  ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> P e. X )