Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnprcl2 | |- ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> P e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | cnprcl | |- ( F e. ( ( J CnP K ) ` P ) -> P e. U. J ) |
| 3 | 2 | adantl | |- ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> P e. U. J ) |
| 4 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 5 | 4 | adantr | |- ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> X = U. J ) |
| 6 | 3 5 | eleqtrrd | |- ( ( J e. ( TopOn ` X ) /\ F e. ( ( J CnP K ) ` P ) ) -> P e. X ) |