| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnrehmeo.1 |  |-  F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) | 
						
							| 2 |  | cnrehmeo.2 |  |-  J = ( topGen ` ran (,) ) | 
						
							| 3 |  | cnrehmeo.3 |  |-  K = ( TopOpen ` CCfld ) | 
						
							| 4 |  | retopon |  |-  ( topGen ` ran (,) ) e. ( TopOn ` RR ) | 
						
							| 5 | 2 4 | eqeltri |  |-  J e. ( TopOn ` RR ) | 
						
							| 6 | 5 | a1i |  |-  ( T. -> J e. ( TopOn ` RR ) ) | 
						
							| 7 | 3 | cnfldtop |  |-  K e. Top | 
						
							| 8 |  | cnrest2r |  |-  ( K e. Top -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) | 
						
							| 9 | 7 8 | mp1i |  |-  ( T. -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) | 
						
							| 10 | 6 6 | cnmpt1st |  |-  ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 11 | 3 | tgioo2 |  |-  ( topGen ` ran (,) ) = ( K |`t RR ) | 
						
							| 12 | 2 11 | eqtri |  |-  J = ( K |`t RR ) | 
						
							| 13 | 12 | oveq2i |  |-  ( ( J tX J ) Cn J ) = ( ( J tX J ) Cn ( K |`t RR ) ) | 
						
							| 14 | 10 13 | eleqtrdi |  |-  ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn ( K |`t RR ) ) ) | 
						
							| 15 | 9 14 | sseldd |  |-  ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn K ) ) | 
						
							| 16 | 3 | cnfldtopon |  |-  K e. ( TopOn ` CC ) | 
						
							| 17 | 16 | a1i |  |-  ( T. -> K e. ( TopOn ` CC ) ) | 
						
							| 18 |  | ax-icn |  |-  _i e. CC | 
						
							| 19 | 18 | a1i |  |-  ( T. -> _i e. CC ) | 
						
							| 20 | 6 6 17 19 | cnmpt2c |  |-  ( T. -> ( x e. RR , y e. RR |-> _i ) e. ( ( J tX J ) Cn K ) ) | 
						
							| 21 | 6 6 | cnmpt2nd |  |-  ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn J ) ) | 
						
							| 22 | 21 13 | eleqtrdi |  |-  ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn ( K |`t RR ) ) ) | 
						
							| 23 | 9 22 | sseldd |  |-  ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn K ) ) | 
						
							| 24 | 3 | mpomulcn |  |-  ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) | 
						
							| 25 | 24 | a1i |  |-  ( T. -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( K tX K ) Cn K ) ) | 
						
							| 26 |  | oveq12 |  |-  ( ( u = _i /\ v = y ) -> ( u x. v ) = ( _i x. y ) ) | 
						
							| 27 | 6 6 20 23 17 17 25 26 | cnmpt22 |  |-  ( T. -> ( x e. RR , y e. RR |-> ( _i x. y ) ) e. ( ( J tX J ) Cn K ) ) | 
						
							| 28 | 3 | addcn |  |-  + e. ( ( K tX K ) Cn K ) | 
						
							| 29 | 28 | a1i |  |-  ( T. -> + e. ( ( K tX K ) Cn K ) ) | 
						
							| 30 | 6 6 15 27 29 | cnmpt22f |  |-  ( T. -> ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) e. ( ( J tX J ) Cn K ) ) | 
						
							| 31 | 1 30 | eqeltrid |  |-  ( T. -> F e. ( ( J tX J ) Cn K ) ) | 
						
							| 32 | 1 | cnrecnv |  |-  `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) | 
						
							| 33 |  | ref |  |-  Re : CC --> RR | 
						
							| 34 | 33 | a1i |  |-  ( T. -> Re : CC --> RR ) | 
						
							| 35 | 34 | feqmptd |  |-  ( T. -> Re = ( z e. CC |-> ( Re ` z ) ) ) | 
						
							| 36 |  | recncf |  |-  Re e. ( CC -cn-> RR ) | 
						
							| 37 |  | ssid |  |-  CC C_ CC | 
						
							| 38 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 39 | 16 | toponrestid |  |-  K = ( K |`t CC ) | 
						
							| 40 | 3 39 12 | cncfcn |  |-  ( ( CC C_ CC /\ RR C_ CC ) -> ( CC -cn-> RR ) = ( K Cn J ) ) | 
						
							| 41 | 37 38 40 | mp2an |  |-  ( CC -cn-> RR ) = ( K Cn J ) | 
						
							| 42 | 36 41 | eleqtri |  |-  Re e. ( K Cn J ) | 
						
							| 43 | 35 42 | eqeltrrdi |  |-  ( T. -> ( z e. CC |-> ( Re ` z ) ) e. ( K Cn J ) ) | 
						
							| 44 |  | imf |  |-  Im : CC --> RR | 
						
							| 45 | 44 | a1i |  |-  ( T. -> Im : CC --> RR ) | 
						
							| 46 | 45 | feqmptd |  |-  ( T. -> Im = ( z e. CC |-> ( Im ` z ) ) ) | 
						
							| 47 |  | imcncf |  |-  Im e. ( CC -cn-> RR ) | 
						
							| 48 | 47 41 | eleqtri |  |-  Im e. ( K Cn J ) | 
						
							| 49 | 46 48 | eqeltrrdi |  |-  ( T. -> ( z e. CC |-> ( Im ` z ) ) e. ( K Cn J ) ) | 
						
							| 50 | 17 43 49 | cnmpt1t |  |-  ( T. -> ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) e. ( K Cn ( J tX J ) ) ) | 
						
							| 51 | 32 50 | eqeltrid |  |-  ( T. -> `' F e. ( K Cn ( J tX J ) ) ) | 
						
							| 52 |  | ishmeo |  |-  ( F e. ( ( J tX J ) Homeo K ) <-> ( F e. ( ( J tX J ) Cn K ) /\ `' F e. ( K Cn ( J tX J ) ) ) ) | 
						
							| 53 | 31 51 52 | sylanbrc |  |-  ( T. -> F e. ( ( J tX J ) Homeo K ) ) | 
						
							| 54 | 53 | mptru |  |-  F e. ( ( J tX J ) Homeo K ) |