Step |
Hyp |
Ref |
Expression |
1 |
|
cnrehmeo.1 |
|- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
2 |
|
cnrehmeo.2 |
|- J = ( topGen ` ran (,) ) |
3 |
|
cnrehmeo.3 |
|- K = ( TopOpen ` CCfld ) |
4 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
5 |
2 4
|
eqeltri |
|- J e. ( TopOn ` RR ) |
6 |
5
|
a1i |
|- ( T. -> J e. ( TopOn ` RR ) ) |
7 |
3
|
cnfldtop |
|- K e. Top |
8 |
|
cnrest2r |
|- ( K e. Top -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) |
9 |
7 8
|
mp1i |
|- ( T. -> ( ( J tX J ) Cn ( K |`t RR ) ) C_ ( ( J tX J ) Cn K ) ) |
10 |
6 6
|
cnmpt1st |
|- ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn J ) ) |
11 |
3
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( K |`t RR ) |
12 |
2 11
|
eqtri |
|- J = ( K |`t RR ) |
13 |
12
|
oveq2i |
|- ( ( J tX J ) Cn J ) = ( ( J tX J ) Cn ( K |`t RR ) ) |
14 |
10 13
|
eleqtrdi |
|- ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn ( K |`t RR ) ) ) |
15 |
9 14
|
sseldd |
|- ( T. -> ( x e. RR , y e. RR |-> x ) e. ( ( J tX J ) Cn K ) ) |
16 |
3
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
17 |
16
|
a1i |
|- ( T. -> K e. ( TopOn ` CC ) ) |
18 |
|
ax-icn |
|- _i e. CC |
19 |
18
|
a1i |
|- ( T. -> _i e. CC ) |
20 |
6 6 17 19
|
cnmpt2c |
|- ( T. -> ( x e. RR , y e. RR |-> _i ) e. ( ( J tX J ) Cn K ) ) |
21 |
6 6
|
cnmpt2nd |
|- ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn J ) ) |
22 |
21 13
|
eleqtrdi |
|- ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn ( K |`t RR ) ) ) |
23 |
9 22
|
sseldd |
|- ( T. -> ( x e. RR , y e. RR |-> y ) e. ( ( J tX J ) Cn K ) ) |
24 |
3
|
mulcn |
|- x. e. ( ( K tX K ) Cn K ) |
25 |
24
|
a1i |
|- ( T. -> x. e. ( ( K tX K ) Cn K ) ) |
26 |
6 6 20 23 25
|
cnmpt22f |
|- ( T. -> ( x e. RR , y e. RR |-> ( _i x. y ) ) e. ( ( J tX J ) Cn K ) ) |
27 |
3
|
addcn |
|- + e. ( ( K tX K ) Cn K ) |
28 |
27
|
a1i |
|- ( T. -> + e. ( ( K tX K ) Cn K ) ) |
29 |
6 6 15 26 28
|
cnmpt22f |
|- ( T. -> ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) e. ( ( J tX J ) Cn K ) ) |
30 |
1 29
|
eqeltrid |
|- ( T. -> F e. ( ( J tX J ) Cn K ) ) |
31 |
1
|
cnrecnv |
|- `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |
32 |
|
ref |
|- Re : CC --> RR |
33 |
32
|
a1i |
|- ( T. -> Re : CC --> RR ) |
34 |
33
|
feqmptd |
|- ( T. -> Re = ( z e. CC |-> ( Re ` z ) ) ) |
35 |
|
recncf |
|- Re e. ( CC -cn-> RR ) |
36 |
|
ssid |
|- CC C_ CC |
37 |
|
ax-resscn |
|- RR C_ CC |
38 |
16
|
toponrestid |
|- K = ( K |`t CC ) |
39 |
3 38 12
|
cncfcn |
|- ( ( CC C_ CC /\ RR C_ CC ) -> ( CC -cn-> RR ) = ( K Cn J ) ) |
40 |
36 37 39
|
mp2an |
|- ( CC -cn-> RR ) = ( K Cn J ) |
41 |
35 40
|
eleqtri |
|- Re e. ( K Cn J ) |
42 |
34 41
|
eqeltrrdi |
|- ( T. -> ( z e. CC |-> ( Re ` z ) ) e. ( K Cn J ) ) |
43 |
|
imf |
|- Im : CC --> RR |
44 |
43
|
a1i |
|- ( T. -> Im : CC --> RR ) |
45 |
44
|
feqmptd |
|- ( T. -> Im = ( z e. CC |-> ( Im ` z ) ) ) |
46 |
|
imcncf |
|- Im e. ( CC -cn-> RR ) |
47 |
46 40
|
eleqtri |
|- Im e. ( K Cn J ) |
48 |
45 47
|
eqeltrrdi |
|- ( T. -> ( z e. CC |-> ( Im ` z ) ) e. ( K Cn J ) ) |
49 |
17 42 48
|
cnmpt1t |
|- ( T. -> ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) e. ( K Cn ( J tX J ) ) ) |
50 |
31 49
|
eqeltrid |
|- ( T. -> `' F e. ( K Cn ( J tX J ) ) ) |
51 |
|
ishmeo |
|- ( F e. ( ( J tX J ) Homeo K ) <-> ( F e. ( ( J tX J ) Cn K ) /\ `' F e. ( K Cn ( J tX J ) ) ) ) |
52 |
30 50 51
|
sylanbrc |
|- ( T. -> F e. ( ( J tX J ) Homeo K ) ) |
53 |
52
|
mptru |
|- F e. ( ( J tX J ) Homeo K ) |