Metamath Proof Explorer


Theorem cnrlmod

Description: The complex left module of complex numbers is a left module. The vector operation is + , and the scalar product is x. . (Contributed by AV, 21-Sep-2021)

Ref Expression
Hypothesis cnrlmod.c
|- C = ( ringLMod ` CCfld )
Assertion cnrlmod
|- C e. LMod

Proof

Step Hyp Ref Expression
1 cnrlmod.c
 |-  C = ( ringLMod ` CCfld )
2 cnring
 |-  CCfld e. Ring
3 rlmlmod
 |-  ( CCfld e. Ring -> ( ringLMod ` CCfld ) e. LMod )
4 2 3 ax-mp
 |-  ( ringLMod ` CCfld ) e. LMod
5 1 4 eqeltri
 |-  C e. LMod