Metamath Proof Explorer


Theorem cnrlvec

Description: The complex left module of complex numbers is a left vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 21-Sep-2021)

Ref Expression
Hypothesis cnrlmod.c
|- C = ( ringLMod ` CCfld )
Assertion cnrlvec
|- C e. LVec

Proof

Step Hyp Ref Expression
1 cnrlmod.c
 |-  C = ( ringLMod ` CCfld )
2 cndrng
 |-  CCfld e. DivRing
3 rlmlvec
 |-  ( CCfld e. DivRing -> ( ringLMod ` CCfld ) e. LVec )
4 2 3 ax-mp
 |-  ( ringLMod ` CCfld ) e. LVec
5 1 4 eqeltri
 |-  C e. LVec