Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
|- < Or RR |
2 |
|
eqid |
|- { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } = { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } |
3 |
|
f1oiso |
|- ( ( a : RR -1-1-onto-> CC /\ { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } = { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ) -> a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) ) |
4 |
2 3
|
mpan2 |
|- ( a : RR -1-1-onto-> CC -> a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) ) |
5 |
|
isoso |
|- ( a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) -> ( < Or RR <-> { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } Or CC ) ) |
6 |
|
soinxp |
|- ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } Or CC <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) |
7 |
5 6
|
bitrdi |
|- ( a Isom < , { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } ( RR , CC ) -> ( < Or RR <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) ) |
8 |
4 7
|
syl |
|- ( a : RR -1-1-onto-> CC -> ( < Or RR <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) ) |
9 |
1 8
|
mpbii |
|- ( a : RR -1-1-onto-> CC -> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) |
10 |
|
cnex |
|- CC e. _V |
11 |
10 10
|
xpex |
|- ( CC X. CC ) e. _V |
12 |
11
|
inex2 |
|- ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) e. _V |
13 |
|
soeq1 |
|- ( x = ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) -> ( x Or CC <-> ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC ) ) |
14 |
12 13
|
spcev |
|- ( ( { <. b , c >. | E. d e. RR E. e e. RR ( ( b = ( a ` d ) /\ c = ( a ` e ) ) /\ d < e ) } i^i ( CC X. CC ) ) Or CC -> E. x x Or CC ) |
15 |
9 14
|
syl |
|- ( a : RR -1-1-onto-> CC -> E. x x Or CC ) |
16 |
|
rpnnen |
|- RR ~~ ~P NN |
17 |
|
cpnnen |
|- CC ~~ ~P NN |
18 |
16 17
|
entr4i |
|- RR ~~ CC |
19 |
|
bren |
|- ( RR ~~ CC <-> E. a a : RR -1-1-onto-> CC ) |
20 |
18 19
|
mpbi |
|- E. a a : RR -1-1-onto-> CC |
21 |
15 20
|
exlimiiv |
|- E. x x Or CC |