| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( ( sqrt ` A ) = 0 -> ( ( sqrt ` A ) ^ 2 ) = ( 0 ^ 2 ) ) | 
						
							| 2 |  | sqrtth |  |-  ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) | 
						
							| 3 |  | sq0 |  |-  ( 0 ^ 2 ) = 0 | 
						
							| 4 | 3 | a1i |  |-  ( A e. CC -> ( 0 ^ 2 ) = 0 ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( A e. CC -> ( ( ( sqrt ` A ) ^ 2 ) = ( 0 ^ 2 ) <-> A = 0 ) ) | 
						
							| 6 | 1 5 | imbitrid |  |-  ( A e. CC -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) | 
						
							| 7 |  | fveq2 |  |-  ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) | 
						
							| 8 |  | sqrt0 |  |-  ( sqrt ` 0 ) = 0 | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( A = 0 -> ( sqrt ` A ) = 0 ) | 
						
							| 10 | 6 9 | impbid1 |  |-  ( A e. CC -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |