| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 2 |
1
|
a1i |
|- ( T. -> CC = ( Base ` CCfld ) ) |
| 3 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 4 |
3
|
a1i |
|- ( T. -> + = ( +g ` CCfld ) ) |
| 5 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 6 |
5
|
a1i |
|- ( T. -> x. = ( .r ` CCfld ) ) |
| 7 |
|
cnfldcj |
|- * = ( *r ` CCfld ) |
| 8 |
7
|
a1i |
|- ( T. -> * = ( *r ` CCfld ) ) |
| 9 |
|
cnring |
|- CCfld e. Ring |
| 10 |
9
|
a1i |
|- ( T. -> CCfld e. Ring ) |
| 11 |
|
cjcl |
|- ( x e. CC -> ( * ` x ) e. CC ) |
| 12 |
11
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( * ` x ) e. CC ) |
| 13 |
|
cjadd |
|- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) |
| 14 |
13
|
3adant1 |
|- ( ( T. /\ x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) |
| 15 |
|
mulcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
| 16 |
15
|
fveq2d |
|- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( * ` ( y x. x ) ) ) |
| 17 |
|
cjmul |
|- ( ( y e. CC /\ x e. CC ) -> ( * ` ( y x. x ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 18 |
17
|
ancoms |
|- ( ( x e. CC /\ y e. CC ) -> ( * ` ( y x. x ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 19 |
16 18
|
eqtrd |
|- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 20 |
19
|
3adant1 |
|- ( ( T. /\ x e. CC /\ y e. CC ) -> ( * ` ( x x. y ) ) = ( ( * ` y ) x. ( * ` x ) ) ) |
| 21 |
|
cjcj |
|- ( x e. CC -> ( * ` ( * ` x ) ) = x ) |
| 22 |
21
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( * ` ( * ` x ) ) = x ) |
| 23 |
2 4 6 8 10 12 14 20 22
|
issrngd |
|- ( T. -> CCfld e. *Ring ) |
| 24 |
23
|
mptru |
|- CCfld e. *Ring |