Metamath Proof Explorer


Theorem cnstrcvs

Description: The set of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 20-Sep-2021)

Ref Expression
Hypothesis cnlmod.w
|- W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } )
Assertion cnstrcvs
|- W e. CVec

Proof

Step Hyp Ref Expression
1 cnlmod.w
 |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } )
2 1 cnlmod
 |-  W e. LMod
3 cnfldex
 |-  CCfld e. _V
4 cnfldbas
 |-  CC = ( Base ` CCfld )
5 4 ressid
 |-  ( CCfld e. _V -> ( CCfld |`s CC ) = CCfld )
6 3 5 ax-mp
 |-  ( CCfld |`s CC ) = CCfld
7 6 eqcomi
 |-  CCfld = ( CCfld |`s CC )
8 id
 |-  ( x e. CC -> x e. CC )
9 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
10 negcl
 |-  ( x e. CC -> -u x e. CC )
11 ax-1cn
 |-  1 e. CC
12 mulcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC )
13 8 9 10 11 12 cnsubrglem
 |-  CC e. ( SubRing ` CCfld )
14 qdass
 |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } u. { <. ( Scalar ` ndx ) , CCfld >. , <. ( .s ` ndx ) , x. >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } )
15 1 14 eqtri
 |-  W = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( Scalar ` ndx ) , CCfld >. } u. { <. ( .s ` ndx ) , x. >. } )
16 15 lmodsca
 |-  ( CCfld e. _V -> CCfld = ( Scalar ` W ) )
17 3 16 ax-mp
 |-  CCfld = ( Scalar ` W )
18 17 isclmi
 |-  ( ( W e. LMod /\ CCfld = ( CCfld |`s CC ) /\ CC e. ( SubRing ` CCfld ) ) -> W e. CMod )
19 2 7 13 18 mp3an
 |-  W e. CMod
20 cndrng
 |-  CCfld e. DivRing
21 17 islvec
 |-  ( W e. LVec <-> ( W e. LMod /\ CCfld e. DivRing ) )
22 2 20 21 mpbir2an
 |-  W e. LVec
23 19 22 elini
 |-  W e. ( CMod i^i LVec )
24 df-cvs
 |-  CVec = ( CMod i^i LVec )
25 23 24 eleqtrri
 |-  W e. CVec