Metamath Proof Explorer


Theorem cnsubdrglem

Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses cnsubglem.1
|- ( x e. A -> x e. CC )
cnsubglem.2
|- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A )
cnsubglem.3
|- ( x e. A -> -u x e. A )
cnsubrglem.4
|- 1 e. A
cnsubrglem.5
|- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A )
cnsubrglem.6
|- ( ( x e. A /\ x =/= 0 ) -> ( 1 / x ) e. A )
Assertion cnsubdrglem
|- ( A e. ( SubRing ` CCfld ) /\ ( CCfld |`s A ) e. DivRing )

Proof

Step Hyp Ref Expression
1 cnsubglem.1
 |-  ( x e. A -> x e. CC )
2 cnsubglem.2
 |-  ( ( x e. A /\ y e. A ) -> ( x + y ) e. A )
3 cnsubglem.3
 |-  ( x e. A -> -u x e. A )
4 cnsubrglem.4
 |-  1 e. A
5 cnsubrglem.5
 |-  ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A )
6 cnsubrglem.6
 |-  ( ( x e. A /\ x =/= 0 ) -> ( 1 / x ) e. A )
7 1 2 3 4 5 cnsubrglem
 |-  A e. ( SubRing ` CCfld )
8 cndrng
 |-  CCfld e. DivRing
9 eqid
 |-  ( CCfld |`s A ) = ( CCfld |`s A )
10 cnfld0
 |-  0 = ( 0g ` CCfld )
11 eqid
 |-  ( invr ` CCfld ) = ( invr ` CCfld )
12 9 10 11 issubdrg
 |-  ( ( CCfld e. DivRing /\ A e. ( SubRing ` CCfld ) ) -> ( ( CCfld |`s A ) e. DivRing <-> A. x e. ( A \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. A ) )
13 8 7 12 mp2an
 |-  ( ( CCfld |`s A ) e. DivRing <-> A. x e. ( A \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. A )
14 cnring
 |-  CCfld e. Ring
15 1 ssriv
 |-  A C_ CC
16 ssdif
 |-  ( A C_ CC -> ( A \ { 0 } ) C_ ( CC \ { 0 } ) )
17 15 16 ax-mp
 |-  ( A \ { 0 } ) C_ ( CC \ { 0 } )
18 17 sseli
 |-  ( x e. ( A \ { 0 } ) -> x e. ( CC \ { 0 } ) )
19 cnfldbas
 |-  CC = ( Base ` CCfld )
20 19 10 8 drngui
 |-  ( CC \ { 0 } ) = ( Unit ` CCfld )
21 cnflddiv
 |-  / = ( /r ` CCfld )
22 cnfld1
 |-  1 = ( 1r ` CCfld )
23 19 20 21 22 11 ringinvdv
 |-  ( ( CCfld e. Ring /\ x e. ( CC \ { 0 } ) ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) )
24 14 18 23 sylancr
 |-  ( x e. ( A \ { 0 } ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) )
25 eldifsn
 |-  ( x e. ( A \ { 0 } ) <-> ( x e. A /\ x =/= 0 ) )
26 25 6 sylbi
 |-  ( x e. ( A \ { 0 } ) -> ( 1 / x ) e. A )
27 24 26 eqeltrd
 |-  ( x e. ( A \ { 0 } ) -> ( ( invr ` CCfld ) ` x ) e. A )
28 13 27 mprgbir
 |-  ( CCfld |`s A ) e. DivRing
29 7 28 pm3.2i
 |-  ( A e. ( SubRing ` CCfld ) /\ ( CCfld |`s A ) e. DivRing )