| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsubglem.1 |
|- ( x e. A -> x e. CC ) |
| 2 |
|
cnsubglem.2 |
|- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
| 3 |
|
cnsubglem.3 |
|- ( x e. A -> -u x e. A ) |
| 4 |
|
cnsubrglem.4 |
|- 1 e. A |
| 5 |
|
cnsubrglem.5 |
|- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
| 6 |
|
cnsubrglem.6 |
|- ( ( x e. A /\ x =/= 0 ) -> ( 1 / x ) e. A ) |
| 7 |
1 2 3 4 5
|
cnsubrglem |
|- A e. ( SubRing ` CCfld ) |
| 8 |
|
cndrng |
|- CCfld e. DivRing |
| 9 |
|
eqid |
|- ( CCfld |`s A ) = ( CCfld |`s A ) |
| 10 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 11 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
| 12 |
9 10 11
|
issubdrg |
|- ( ( CCfld e. DivRing /\ A e. ( SubRing ` CCfld ) ) -> ( ( CCfld |`s A ) e. DivRing <-> A. x e. ( A \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. A ) ) |
| 13 |
8 7 12
|
mp2an |
|- ( ( CCfld |`s A ) e. DivRing <-> A. x e. ( A \ { 0 } ) ( ( invr ` CCfld ) ` x ) e. A ) |
| 14 |
|
cnring |
|- CCfld e. Ring |
| 15 |
1
|
ssriv |
|- A C_ CC |
| 16 |
|
ssdif |
|- ( A C_ CC -> ( A \ { 0 } ) C_ ( CC \ { 0 } ) ) |
| 17 |
15 16
|
ax-mp |
|- ( A \ { 0 } ) C_ ( CC \ { 0 } ) |
| 18 |
17
|
sseli |
|- ( x e. ( A \ { 0 } ) -> x e. ( CC \ { 0 } ) ) |
| 19 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 20 |
19 10 8
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 21 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
| 22 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 23 |
19 20 21 22 11
|
ringinvdv |
|- ( ( CCfld e. Ring /\ x e. ( CC \ { 0 } ) ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 24 |
14 18 23
|
sylancr |
|- ( x e. ( A \ { 0 } ) -> ( ( invr ` CCfld ) ` x ) = ( 1 / x ) ) |
| 25 |
|
eldifsn |
|- ( x e. ( A \ { 0 } ) <-> ( x e. A /\ x =/= 0 ) ) |
| 26 |
25 6
|
sylbi |
|- ( x e. ( A \ { 0 } ) -> ( 1 / x ) e. A ) |
| 27 |
24 26
|
eqeltrd |
|- ( x e. ( A \ { 0 } ) -> ( ( invr ` CCfld ) ` x ) e. A ) |
| 28 |
13 27
|
mprgbir |
|- ( CCfld |`s A ) e. DivRing |
| 29 |
7 28
|
pm3.2i |
|- ( A e. ( SubRing ` CCfld ) /\ ( CCfld |`s A ) e. DivRing ) |