Metamath Proof Explorer


Theorem cnsubglem

Description: Lemma for resubdrg and friends. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses cnsubglem.1
|- ( x e. A -> x e. CC )
cnsubglem.2
|- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A )
cnsubglem.3
|- ( x e. A -> -u x e. A )
cnsubglem.4
|- B e. A
Assertion cnsubglem
|- A e. ( SubGrp ` CCfld )

Proof

Step Hyp Ref Expression
1 cnsubglem.1
 |-  ( x e. A -> x e. CC )
2 cnsubglem.2
 |-  ( ( x e. A /\ y e. A ) -> ( x + y ) e. A )
3 cnsubglem.3
 |-  ( x e. A -> -u x e. A )
4 cnsubglem.4
 |-  B e. A
5 1 ssriv
 |-  A C_ CC
6 4 ne0ii
 |-  A =/= (/)
7 2 ralrimiva
 |-  ( x e. A -> A. y e. A ( x + y ) e. A )
8 cnfldneg
 |-  ( x e. CC -> ( ( invg ` CCfld ) ` x ) = -u x )
9 1 8 syl
 |-  ( x e. A -> ( ( invg ` CCfld ) ` x ) = -u x )
10 9 3 eqeltrd
 |-  ( x e. A -> ( ( invg ` CCfld ) ` x ) e. A )
11 7 10 jca
 |-  ( x e. A -> ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) )
12 11 rgen
 |-  A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A )
13 cnring
 |-  CCfld e. Ring
14 ringgrp
 |-  ( CCfld e. Ring -> CCfld e. Grp )
15 cnfldbas
 |-  CC = ( Base ` CCfld )
16 cnfldadd
 |-  + = ( +g ` CCfld )
17 eqid
 |-  ( invg ` CCfld ) = ( invg ` CCfld )
18 15 16 17 issubg2
 |-  ( CCfld e. Grp -> ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) )
19 13 14 18 mp2b
 |-  ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) )
20 5 6 12 19 mpbir3an
 |-  A e. ( SubGrp ` CCfld )