| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnsubglem.1 |  |-  ( x e. A -> x e. CC ) | 
						
							| 2 |  | cnsubglem.2 |  |-  ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) | 
						
							| 3 |  | cnsubglem.3 |  |-  ( x e. A -> -u x e. A ) | 
						
							| 4 |  | cnsubglem.4 |  |-  B e. A | 
						
							| 5 | 1 | ssriv |  |-  A C_ CC | 
						
							| 6 | 4 | ne0ii |  |-  A =/= (/) | 
						
							| 7 | 2 | ralrimiva |  |-  ( x e. A -> A. y e. A ( x + y ) e. A ) | 
						
							| 8 |  | cnfldneg |  |-  ( x e. CC -> ( ( invg ` CCfld ) ` x ) = -u x ) | 
						
							| 9 | 1 8 | syl |  |-  ( x e. A -> ( ( invg ` CCfld ) ` x ) = -u x ) | 
						
							| 10 | 9 3 | eqeltrd |  |-  ( x e. A -> ( ( invg ` CCfld ) ` x ) e. A ) | 
						
							| 11 | 7 10 | jca |  |-  ( x e. A -> ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) | 
						
							| 12 | 11 | rgen |  |-  A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) | 
						
							| 13 |  | cnring |  |-  CCfld e. Ring | 
						
							| 14 |  | ringgrp |  |-  ( CCfld e. Ring -> CCfld e. Grp ) | 
						
							| 15 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 16 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 17 |  | eqid |  |-  ( invg ` CCfld ) = ( invg ` CCfld ) | 
						
							| 18 | 15 16 17 | issubg2 |  |-  ( CCfld e. Grp -> ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) ) | 
						
							| 19 | 13 14 18 | mp2b |  |-  ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) | 
						
							| 20 | 5 6 12 19 | mpbir3an |  |-  A e. ( SubGrp ` CCfld ) |