Step |
Hyp |
Ref |
Expression |
1 |
|
cnsubglem.1 |
|- ( x e. A -> x e. CC ) |
2 |
|
cnsubglem.2 |
|- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
3 |
|
cnsubmlem.3 |
|- 0 e. A |
4 |
1
|
ssriv |
|- A C_ CC |
5 |
2
|
rgen2 |
|- A. x e. A A. y e. A ( x + y ) e. A |
6 |
|
cnring |
|- CCfld e. Ring |
7 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
8 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
9 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
10 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
11 |
8 9 10
|
issubm |
|- ( CCfld e. Mnd -> ( A e. ( SubMnd ` CCfld ) <-> ( A C_ CC /\ 0 e. A /\ A. x e. A A. y e. A ( x + y ) e. A ) ) ) |
12 |
6 7 11
|
mp2b |
|- ( A e. ( SubMnd ` CCfld ) <-> ( A C_ CC /\ 0 e. A /\ A. x e. A A. y e. A ( x + y ) e. A ) ) |
13 |
4 3 5 12
|
mpbir3an |
|- A e. ( SubMnd ` CCfld ) |