| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdif0 |  |-  ( R C_ RR <-> ( R \ RR ) = (/) ) | 
						
							| 2 |  | simpr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> R C_ RR ) | 
						
							| 3 |  | simplr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> RR C_ R ) | 
						
							| 4 | 2 3 | eqssd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> R = RR ) | 
						
							| 5 | 4 | orcd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> ( R = RR \/ R = CC ) ) | 
						
							| 6 | 1 5 | sylan2br |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( R \ RR ) = (/) ) -> ( R = RR \/ R = CC ) ) | 
						
							| 7 |  | n0 |  |-  ( ( R \ RR ) =/= (/) <-> E. x x e. ( R \ RR ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R e. ( SubRing ` CCfld ) ) | 
						
							| 9 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 10 | 9 | subrgss |  |-  ( R e. ( SubRing ` CCfld ) -> R C_ CC ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R C_ CC ) | 
						
							| 12 |  | replim |  |-  ( y e. CC -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) | 
						
							| 13 | 12 | ad2antll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) | 
						
							| 14 |  | simpll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> R e. ( SubRing ` CCfld ) ) | 
						
							| 15 |  | simplr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> RR C_ R ) | 
						
							| 16 |  | recl |  |-  ( y e. CC -> ( Re ` y ) e. RR ) | 
						
							| 17 | 16 | ad2antll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Re ` y ) e. RR ) | 
						
							| 18 | 15 17 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Re ` y ) e. R ) | 
						
							| 19 |  | ax-icn |  |-  _i e. CC | 
						
							| 20 | 19 | a1i |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i e. CC ) | 
						
							| 21 |  | eldifi |  |-  ( x e. ( R \ RR ) -> x e. R ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x e. R ) | 
						
							| 23 | 11 22 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x e. CC ) | 
						
							| 24 |  | imcl |  |-  ( x e. CC -> ( Im ` x ) e. RR ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) e. RR ) | 
						
							| 26 | 25 | recnd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) e. CC ) | 
						
							| 27 |  | eldifn |  |-  ( x e. ( R \ RR ) -> -. x e. RR ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -. x e. RR ) | 
						
							| 29 |  | reim0b |  |-  ( x e. CC -> ( x e. RR <-> ( Im ` x ) = 0 ) ) | 
						
							| 30 | 29 | necon3bbid |  |-  ( x e. CC -> ( -. x e. RR <-> ( Im ` x ) =/= 0 ) ) | 
						
							| 31 | 23 30 | syl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( -. x e. RR <-> ( Im ` x ) =/= 0 ) ) | 
						
							| 32 | 28 31 | mpbid |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) =/= 0 ) | 
						
							| 33 | 20 26 32 | divcan4d |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) / ( Im ` x ) ) = _i ) | 
						
							| 34 |  | mulcl |  |-  ( ( _i e. CC /\ ( Im ` x ) e. CC ) -> ( _i x. ( Im ` x ) ) e. CC ) | 
						
							| 35 | 19 26 34 | sylancr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( _i x. ( Im ` x ) ) e. CC ) | 
						
							| 36 | 35 26 32 | divrecd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) / ( Im ` x ) ) = ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) ) | 
						
							| 37 | 33 36 | eqtr3d |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i = ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) ) | 
						
							| 38 | 23 | recld |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Re ` x ) e. RR ) | 
						
							| 39 | 38 | recnd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Re ` x ) e. CC ) | 
						
							| 40 | 23 39 | negsubd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) = ( x - ( Re ` x ) ) ) | 
						
							| 41 |  | replim |  |-  ( x e. CC -> x = ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) ) | 
						
							| 42 | 23 41 | syl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x = ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x - ( Re ` x ) ) = ( ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) - ( Re ` x ) ) ) | 
						
							| 44 | 39 35 | pncan2d |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) - ( Re ` x ) ) = ( _i x. ( Im ` x ) ) ) | 
						
							| 45 | 40 43 44 | 3eqtrd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) = ( _i x. ( Im ` x ) ) ) | 
						
							| 46 |  | simplr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> RR C_ R ) | 
						
							| 47 | 38 | renegcld |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -u ( Re ` x ) e. RR ) | 
						
							| 48 | 46 47 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -u ( Re ` x ) e. R ) | 
						
							| 49 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 50 | 49 | subrgacl |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ -u ( Re ` x ) e. R ) -> ( x + -u ( Re ` x ) ) e. R ) | 
						
							| 51 | 8 22 48 50 | syl3anc |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) e. R ) | 
						
							| 52 | 45 51 | eqeltrrd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( _i x. ( Im ` x ) ) e. R ) | 
						
							| 53 | 25 32 | rereccld |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( 1 / ( Im ` x ) ) e. RR ) | 
						
							| 54 | 46 53 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( 1 / ( Im ` x ) ) e. R ) | 
						
							| 55 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 56 | 55 | subrgmcl |  |-  ( ( R e. ( SubRing ` CCfld ) /\ ( _i x. ( Im ` x ) ) e. R /\ ( 1 / ( Im ` x ) ) e. R ) -> ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) e. R ) | 
						
							| 57 | 8 52 54 56 | syl3anc |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) e. R ) | 
						
							| 58 | 37 57 | eqeltrd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i e. R ) | 
						
							| 59 | 58 | adantrr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> _i e. R ) | 
						
							| 60 |  | imcl |  |-  ( y e. CC -> ( Im ` y ) e. RR ) | 
						
							| 61 | 60 | ad2antll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Im ` y ) e. RR ) | 
						
							| 62 | 15 61 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Im ` y ) e. R ) | 
						
							| 63 | 55 | subrgmcl |  |-  ( ( R e. ( SubRing ` CCfld ) /\ _i e. R /\ ( Im ` y ) e. R ) -> ( _i x. ( Im ` y ) ) e. R ) | 
						
							| 64 | 14 59 62 63 | syl3anc |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( _i x. ( Im ` y ) ) e. R ) | 
						
							| 65 | 49 | subrgacl |  |-  ( ( R e. ( SubRing ` CCfld ) /\ ( Re ` y ) e. R /\ ( _i x. ( Im ` y ) ) e. R ) -> ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) e. R ) | 
						
							| 66 | 14 18 64 65 | syl3anc |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) e. R ) | 
						
							| 67 | 13 66 | eqeltrd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> y e. R ) | 
						
							| 68 | 67 | expr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( y e. CC -> y e. R ) ) | 
						
							| 69 | 68 | ssrdv |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> CC C_ R ) | 
						
							| 70 | 11 69 | eqssd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R = CC ) | 
						
							| 71 | 70 | olcd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( R = RR \/ R = CC ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( x e. ( R \ RR ) -> ( R = RR \/ R = CC ) ) ) | 
						
							| 73 | 72 | exlimdv |  |-  ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( E. x x e. ( R \ RR ) -> ( R = RR \/ R = CC ) ) ) | 
						
							| 74 | 73 | imp |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ E. x x e. ( R \ RR ) ) -> ( R = RR \/ R = CC ) ) | 
						
							| 75 | 7 74 | sylan2b |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( R \ RR ) =/= (/) ) -> ( R = RR \/ R = CC ) ) | 
						
							| 76 | 6 75 | pm2.61dane |  |-  ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( R = RR \/ R = CC ) ) | 
						
							| 77 |  | elprg |  |-  ( R e. ( SubRing ` CCfld ) -> ( R e. { RR , CC } <-> ( R = RR \/ R = CC ) ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( R e. { RR , CC } <-> ( R = RR \/ R = CC ) ) ) | 
						
							| 79 | 76 78 | mpbird |  |-  ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> R e. { RR , CC } ) |