Step |
Hyp |
Ref |
Expression |
1 |
|
cnsubglem.1 |
|- ( x e. A -> x e. CC ) |
2 |
|
cnsubglem.2 |
|- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
3 |
|
cnsubglem.3 |
|- ( x e. A -> -u x e. A ) |
4 |
|
cnsubrglem.4 |
|- 1 e. A |
5 |
|
cnsubrglem.5 |
|- ( ( x e. A /\ y e. A ) -> ( x x. y ) e. A ) |
6 |
1 2 3 4
|
cnsubglem |
|- A e. ( SubGrp ` CCfld ) |
7 |
5
|
rgen2 |
|- A. x e. A A. y e. A ( x x. y ) e. A |
8 |
|
cnring |
|- CCfld e. Ring |
9 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
10 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
11 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
12 |
9 10 11
|
issubrg2 |
|- ( CCfld e. Ring -> ( A e. ( SubRing ` CCfld ) <-> ( A e. ( SubGrp ` CCfld ) /\ 1 e. A /\ A. x e. A A. y e. A ( x x. y ) e. A ) ) ) |
13 |
8 12
|
ax-mp |
|- ( A e. ( SubRing ` CCfld ) <-> ( A e. ( SubGrp ` CCfld ) /\ 1 e. A /\ A. x e. A A. y e. A ( x x. y ) e. A ) ) |
14 |
6 4 7 13
|
mpbir3an |
|- A e. ( SubRing ` CCfld ) |