Step |
Hyp |
Ref |
Expression |
1 |
|
cntrcmnd.z |
|- Z = ( M |`s ( Cntr ` M ) ) |
2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
3 |
|
eqid |
|- ( Cntz ` M ) = ( Cntz ` M ) |
4 |
2 3
|
cntrval |
|- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
5 |
|
ssid |
|- ( Base ` M ) C_ ( Base ` M ) |
6 |
2 3
|
cntzsubg |
|- ( ( M e. Grp /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
7 |
5 6
|
mpan2 |
|- ( M e. Grp -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
8 |
4 7
|
eqeltrrid |
|- ( M e. Grp -> ( Cntr ` M ) e. ( SubGrp ` M ) ) |
9 |
1
|
subggrp |
|- ( ( Cntr ` M ) e. ( SubGrp ` M ) -> Z e. Grp ) |
10 |
8 9
|
syl |
|- ( M e. Grp -> Z e. Grp ) |
11 |
|
grpmnd |
|- ( M e. Grp -> M e. Mnd ) |
12 |
1
|
cntrcmnd |
|- ( M e. Mnd -> Z e. CMnd ) |
13 |
11 12
|
syl |
|- ( M e. Grp -> Z e. CMnd ) |
14 |
|
isabl |
|- ( Z e. Abel <-> ( Z e. Grp /\ Z e. CMnd ) ) |
15 |
10 13 14
|
sylanbrc |
|- ( M e. Grp -> Z e. Abel ) |