| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrcmnd.z |
|- Z = ( M |`s ( Cntr ` M ) ) |
| 2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 3 |
2
|
cntrss |
|- ( Cntr ` M ) C_ ( Base ` M ) |
| 4 |
1 2
|
ressbas2 |
|- ( ( Cntr ` M ) C_ ( Base ` M ) -> ( Cntr ` M ) = ( Base ` Z ) ) |
| 5 |
3 4
|
mp1i |
|- ( M e. Mnd -> ( Cntr ` M ) = ( Base ` Z ) ) |
| 6 |
|
fvex |
|- ( Cntr ` M ) e. _V |
| 7 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 8 |
1 7
|
ressplusg |
|- ( ( Cntr ` M ) e. _V -> ( +g ` M ) = ( +g ` Z ) ) |
| 9 |
6 8
|
mp1i |
|- ( M e. Mnd -> ( +g ` M ) = ( +g ` Z ) ) |
| 10 |
|
eqid |
|- ( Cntz ` M ) = ( Cntz ` M ) |
| 11 |
2 10
|
cntrval |
|- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
| 12 |
|
ssid |
|- ( Base ` M ) C_ ( Base ` M ) |
| 13 |
2 10
|
cntzsubm |
|- ( ( M e. Mnd /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubMnd ` M ) ) |
| 14 |
12 13
|
mpan2 |
|- ( M e. Mnd -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubMnd ` M ) ) |
| 15 |
11 14
|
eqeltrrid |
|- ( M e. Mnd -> ( Cntr ` M ) e. ( SubMnd ` M ) ) |
| 16 |
1
|
submmnd |
|- ( ( Cntr ` M ) e. ( SubMnd ` M ) -> Z e. Mnd ) |
| 17 |
15 16
|
syl |
|- ( M e. Mnd -> Z e. Mnd ) |
| 18 |
|
simp2 |
|- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> x e. ( Cntr ` M ) ) |
| 19 |
|
simp3 |
|- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> y e. ( Cntr ` M ) ) |
| 20 |
3 19
|
sselid |
|- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> y e. ( Base ` M ) ) |
| 21 |
|
eqid |
|- ( Cntr ` M ) = ( Cntr ` M ) |
| 22 |
2 7 21
|
cntri |
|- ( ( x e. ( Cntr ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 23 |
18 20 22
|
syl2anc |
|- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 24 |
5 9 17 23
|
iscmnd |
|- ( M e. Mnd -> Z e. CMnd ) |