Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntri.b | |- B = ( Base ` M ) | |
| cntri.p | |- .+ = ( +g ` M ) | ||
| cntri.z | |- Z = ( Cntr ` M ) | ||
| Assertion | cntri | |- ( ( X e. Z /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cntri.b | |- B = ( Base ` M ) | |
| 2 | cntri.p | |- .+ = ( +g ` M ) | |
| 3 | cntri.z | |- Z = ( Cntr ` M ) | |
| 4 | eqid | |- ( Cntz ` M ) = ( Cntz ` M ) | |
| 5 | 1 4 | cntrval | |- ( ( Cntz ` M ) ` B ) = ( Cntr ` M ) | 
| 6 | 3 5 | eqtr4i | |- Z = ( ( Cntz ` M ) ` B ) | 
| 7 | 6 | eleq2i | |- ( X e. Z <-> X e. ( ( Cntz ` M ) ` B ) ) | 
| 8 | 2 4 | cntzi | |- ( ( X e. ( ( Cntz ` M ) ` B ) /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) | 
| 9 | 7 8 | sylanb | |- ( ( X e. Z /\ Y e. B ) -> ( X .+ Y ) = ( Y .+ X ) ) |