| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrnsg.z |
|- Z = ( Cntr ` M ) |
| 2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 3 |
|
eqid |
|- ( Cntz ` M ) = ( Cntz ` M ) |
| 4 |
2 3
|
cntrval |
|- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
| 5 |
1 4
|
eqtr4i |
|- Z = ( ( Cntz ` M ) ` ( Base ` M ) ) |
| 6 |
|
ssid |
|- ( Base ` M ) C_ ( Base ` M ) |
| 7 |
2 3
|
cntzsubg |
|- ( ( M e. Grp /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
| 8 |
6 7
|
mpan2 |
|- ( M e. Grp -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubGrp ` M ) ) |
| 9 |
5 8
|
eqeltrid |
|- ( M e. Grp -> Z e. ( SubGrp ` M ) ) |
| 10 |
|
ssid |
|- Z C_ Z |
| 11 |
1
|
cntrsubgnsg |
|- ( ( Z e. ( SubGrp ` M ) /\ Z C_ Z ) -> Z e. ( NrmSGrp ` M ) ) |
| 12 |
9 10 11
|
sylancl |
|- ( M e. Grp -> Z e. ( NrmSGrp ` M ) ) |