Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cntzcmnss.b | |- B = ( Base ` G ) |
|
cntzcmnss.z | |- Z = ( Cntz ` G ) |
||
Assertion | cntzcmnss | |- ( ( G e. CMnd /\ S C_ B ) -> S C_ ( Z ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnss.b | |- B = ( Base ` G ) |
|
2 | cntzcmnss.z | |- Z = ( Cntz ` G ) |
|
3 | 1 2 | cntzcmn | |- ( ( G e. CMnd /\ S C_ B ) -> ( Z ` S ) = B ) |
4 | sseq2 | |- ( B = ( Z ` S ) -> ( S C_ B <-> S C_ ( Z ` S ) ) ) |
|
5 | 4 | eqcoms | |- ( ( Z ` S ) = B -> ( S C_ B <-> S C_ ( Z ` S ) ) ) |
6 | 5 | biimpd | |- ( ( Z ` S ) = B -> ( S C_ B -> S C_ ( Z ` S ) ) ) |
7 | 6 | adantld | |- ( ( Z ` S ) = B -> ( ( G e. CMnd /\ S C_ B ) -> S C_ ( Z ` S ) ) ) |
8 | 3 7 | mpcom | |- ( ( G e. CMnd /\ S C_ B ) -> S C_ ( Z ` S ) ) |