Metamath Proof Explorer


Theorem cntzcmnss

Description: Any subset in a commutative monoid is a subset of its centralizer. (Contributed by AV, 12-Jan-2019)

Ref Expression
Hypotheses cntzcmnss.b
|- B = ( Base ` G )
cntzcmnss.z
|- Z = ( Cntz ` G )
Assertion cntzcmnss
|- ( ( G e. CMnd /\ S C_ B ) -> S C_ ( Z ` S ) )

Proof

Step Hyp Ref Expression
1 cntzcmnss.b
 |-  B = ( Base ` G )
2 cntzcmnss.z
 |-  Z = ( Cntz ` G )
3 1 2 cntzcmn
 |-  ( ( G e. CMnd /\ S C_ B ) -> ( Z ` S ) = B )
4 sseq2
 |-  ( B = ( Z ` S ) -> ( S C_ B <-> S C_ ( Z ` S ) ) )
5 4 eqcoms
 |-  ( ( Z ` S ) = B -> ( S C_ B <-> S C_ ( Z ` S ) ) )
6 5 biimpd
 |-  ( ( Z ` S ) = B -> ( S C_ B -> S C_ ( Z ` S ) ) )
7 6 adantld
 |-  ( ( Z ` S ) = B -> ( ( G e. CMnd /\ S C_ B ) -> S C_ ( Z ` S ) ) )
8 3 7 mpcom
 |-  ( ( G e. CMnd /\ S C_ B ) -> S C_ ( Z ` S ) )