Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cntzfval.b | |- B = ( Base ` M ) |
|
cntzfval.p | |- .+ = ( +g ` M ) |
||
cntzfval.z | |- Z = ( Cntz ` M ) |
||
Assertion | cntzel | |- ( ( S C_ B /\ X e. B ) -> ( X e. ( Z ` S ) <-> A. y e. S ( X .+ y ) = ( y .+ X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.b | |- B = ( Base ` M ) |
|
2 | cntzfval.p | |- .+ = ( +g ` M ) |
|
3 | cntzfval.z | |- Z = ( Cntz ` M ) |
|
4 | 1 2 3 | elcntz | |- ( S C_ B -> ( X e. ( Z ` S ) <-> ( X e. B /\ A. y e. S ( X .+ y ) = ( y .+ X ) ) ) ) |
5 | 4 | baibd | |- ( ( S C_ B /\ X e. B ) -> ( X e. ( Z ` S ) <-> A. y e. S ( X .+ y ) = ( y .+ X ) ) ) |