Metamath Proof Explorer


Theorem cntzel

Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzfval.b
|- B = ( Base ` M )
cntzfval.p
|- .+ = ( +g ` M )
cntzfval.z
|- Z = ( Cntz ` M )
Assertion cntzel
|- ( ( S C_ B /\ X e. B ) -> ( X e. ( Z ` S ) <-> A. y e. S ( X .+ y ) = ( y .+ X ) ) )

Proof

Step Hyp Ref Expression
1 cntzfval.b
 |-  B = ( Base ` M )
2 cntzfval.p
 |-  .+ = ( +g ` M )
3 cntzfval.z
 |-  Z = ( Cntz ` M )
4 1 2 3 elcntz
 |-  ( S C_ B -> ( X e. ( Z ` S ) <-> ( X e. B /\ A. y e. S ( X .+ y ) = ( y .+ X ) ) ) )
5 4 baibd
 |-  ( ( S C_ B /\ X e. B ) -> ( X e. ( Z ` S ) <-> A. y e. S ( X .+ y ) = ( y .+ X ) ) )