Description: Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | |- B = ( Base ` M ) |
|
| cntzfval.p | |- .+ = ( +g ` M ) |
||
| cntzfval.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzel | |- ( ( S C_ B /\ X e. B ) -> ( X e. ( Z ` S ) <-> A. y e. S ( X .+ y ) = ( y .+ X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | |- B = ( Base ` M ) |
|
| 2 | cntzfval.p | |- .+ = ( +g ` M ) |
|
| 3 | cntzfval.z | |- Z = ( Cntz ` M ) |
|
| 4 | 1 2 3 | elcntz | |- ( S C_ B -> ( X e. ( Z ` S ) <-> ( X e. B /\ A. y e. S ( X .+ y ) = ( y .+ X ) ) ) ) |
| 5 | 4 | baibd | |- ( ( S C_ B /\ X e. B ) -> ( X e. ( Z ` S ) <-> A. y e. S ( X .+ y ) = ( y .+ X ) ) ) |