| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzmhm.z |
|- Z = ( Cntz ` G ) |
| 2 |
|
simpr |
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ S ) |
| 3 |
|
simpl |
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Z ` S ) ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
4 1
|
cntzssv |
|- ( Z ` S ) C_ ( Base ` G ) |
| 6 |
3 5
|
sstrdi |
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Base ` G ) ) |
| 7 |
4 1
|
cntz2ss |
|- ( ( S C_ ( Base ` G ) /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) ) |
| 8 |
6 7
|
sylancom |
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) ) |
| 9 |
3 8
|
sstrd |
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Z ` T ) ) |
| 10 |
2 9
|
sstrd |
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ ( Z ` T ) ) |