Metamath Proof Explorer


Theorem cntzidss

Description: If the elements of S commute, the elements of a subset T also commute. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis cntzmhm.z
|- Z = ( Cntz ` G )
Assertion cntzidss
|- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ ( Z ` T ) )

Proof

Step Hyp Ref Expression
1 cntzmhm.z
 |-  Z = ( Cntz ` G )
2 simpr
 |-  ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ S )
3 simpl
 |-  ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Z ` S ) )
4 eqid
 |-  ( Base ` G ) = ( Base ` G )
5 4 1 cntzssv
 |-  ( Z ` S ) C_ ( Base ` G )
6 3 5 sstrdi
 |-  ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Base ` G ) )
7 4 1 cntz2ss
 |-  ( ( S C_ ( Base ` G ) /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) )
8 6 7 sylancom
 |-  ( ( S C_ ( Z ` S ) /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) )
9 3 8 sstrd
 |-  ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Z ` T ) )
10 2 9 sstrd
 |-  ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ ( Z ` T ) )