| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzmhm.z |  |-  Z = ( Cntz ` G ) | 
						
							| 2 |  | cntzmhm.y |  |-  Y = ( Cntz ` H ) | 
						
							| 3 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 4 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 5 | 3 4 | mhmf |  |-  ( F e. ( G MndHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 6 | 3 1 | cntzssv |  |-  ( Z ` S ) C_ ( Base ` G ) | 
						
							| 7 | 6 | sseli |  |-  ( A e. ( Z ` S ) -> A e. ( Base ` G ) ) | 
						
							| 8 |  | ffvelcdm |  |-  ( ( F : ( Base ` G ) --> ( Base ` H ) /\ A e. ( Base ` G ) ) -> ( F ` A ) e. ( Base ` H ) ) | 
						
							| 9 | 5 7 8 | syl2an |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Base ` H ) ) | 
						
							| 10 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 11 | 10 1 | cntzi |  |-  ( ( A e. ( Z ` S ) /\ x e. S ) -> ( A ( +g ` G ) x ) = ( x ( +g ` G ) A ) ) | 
						
							| 12 | 11 | adantll |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( A ( +g ` G ) x ) = ( x ( +g ` G ) A ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( A ( +g ` G ) x ) ) = ( F ` ( x ( +g ` G ) A ) ) ) | 
						
							| 14 |  | simpll |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> F e. ( G MndHom H ) ) | 
						
							| 15 | 7 | ad2antlr |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> A e. ( Base ` G ) ) | 
						
							| 16 | 3 1 | cntzrcl |  |-  ( A e. ( Z ` S ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) | 
						
							| 18 | 17 | simprd |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> S C_ ( Base ` G ) ) | 
						
							| 19 | 18 | sselda |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> x e. ( Base ` G ) ) | 
						
							| 20 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 21 | 3 10 20 | mhmlin |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Base ` G ) /\ x e. ( Base ` G ) ) -> ( F ` ( A ( +g ` G ) x ) ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) | 
						
							| 22 | 14 15 19 21 | syl3anc |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( A ( +g ` G ) x ) ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) | 
						
							| 23 | 3 10 20 | mhmlin |  |-  ( ( F e. ( G MndHom H ) /\ x e. ( Base ` G ) /\ A e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) | 
						
							| 24 | 14 19 15 23 | syl3anc |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( F ` ( x ( +g ` G ) A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) | 
						
							| 25 | 13 22 24 | 3eqtr3d |  |-  ( ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) /\ x e. S ) -> ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) | 
						
							| 26 | 25 | ralrimiva |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) | 
						
							| 27 | 5 | adantr |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) | 
						
							| 28 | 27 | ffnd |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> F Fn ( Base ` G ) ) | 
						
							| 29 |  | oveq2 |  |-  ( y = ( F ` x ) -> ( ( F ` A ) ( +g ` H ) y ) = ( ( F ` A ) ( +g ` H ) ( F ` x ) ) ) | 
						
							| 30 |  | oveq1 |  |-  ( y = ( F ` x ) -> ( y ( +g ` H ) ( F ` A ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) | 
						
							| 31 | 29 30 | eqeq12d |  |-  ( y = ( F ` x ) -> ( ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) | 
						
							| 32 | 31 | ralima |  |-  ( ( F Fn ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) | 
						
							| 33 | 28 18 32 | syl2anc |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) <-> A. x e. S ( ( F ` A ) ( +g ` H ) ( F ` x ) ) = ( ( F ` x ) ( +g ` H ) ( F ` A ) ) ) ) | 
						
							| 34 | 26 33 | mpbird |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) | 
						
							| 35 |  | imassrn |  |-  ( F " S ) C_ ran F | 
						
							| 36 | 27 | frnd |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ran F C_ ( Base ` H ) ) | 
						
							| 37 | 35 36 | sstrid |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F " S ) C_ ( Base ` H ) ) | 
						
							| 38 | 4 20 2 | elcntz |  |-  ( ( F " S ) C_ ( Base ` H ) -> ( ( F ` A ) e. ( Y ` ( F " S ) ) <-> ( ( F ` A ) e. ( Base ` H ) /\ A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( ( F ` A ) e. ( Y ` ( F " S ) ) <-> ( ( F ` A ) e. ( Base ` H ) /\ A. y e. ( F " S ) ( ( F ` A ) ( +g ` H ) y ) = ( y ( +g ` H ) ( F ` A ) ) ) ) ) | 
						
							| 40 | 9 34 39 | mpbir2and |  |-  ( ( F e. ( G MndHom H ) /\ A e. ( Z ` S ) ) -> ( F ` A ) e. ( Y ` ( F " S ) ) ) |