| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzspan.z |
|- Z = ( Cntz ` G ) |
| 2 |
|
cntzspan.k |
|- K = ( mrCls ` ( SubMnd ` G ) ) |
| 3 |
|
cntzspan.h |
|- H = ( G |`s ( K ` S ) ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
4
|
submacs |
|- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 6 |
5
|
adantr |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( SubMnd ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 7 |
6
|
acsmred |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 8 |
|
simpr |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Z ` S ) ) |
| 9 |
4 1
|
cntzssv |
|- ( Z ` S ) C_ ( Base ` G ) |
| 10 |
8 9
|
sstrdi |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Base ` G ) ) |
| 11 |
4 1
|
cntzsubm |
|- ( ( G e. Mnd /\ S C_ ( Base ` G ) ) -> ( Z ` S ) e. ( SubMnd ` G ) ) |
| 12 |
10 11
|
syldan |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( Z ` S ) e. ( SubMnd ` G ) ) |
| 13 |
2
|
mrcsscl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Z ` S ) /\ ( Z ` S ) e. ( SubMnd ` G ) ) -> ( K ` S ) C_ ( Z ` S ) ) |
| 14 |
7 8 12 13
|
syl3anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Z ` S ) ) |
| 15 |
7 2
|
mrcssvd |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Base ` G ) ) |
| 16 |
4 1
|
cntzrec |
|- ( ( ( K ` S ) C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( ( K ` S ) C_ ( Z ` S ) <-> S C_ ( Z ` ( K ` S ) ) ) ) |
| 17 |
15 10 16
|
syl2anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( ( K ` S ) C_ ( Z ` S ) <-> S C_ ( Z ` ( K ` S ) ) ) ) |
| 18 |
14 17
|
mpbid |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Z ` ( K ` S ) ) ) |
| 19 |
4 1
|
cntzsubm |
|- ( ( G e. Mnd /\ ( K ` S ) C_ ( Base ` G ) ) -> ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) |
| 20 |
15 19
|
syldan |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) |
| 21 |
2
|
mrcsscl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Z ` ( K ` S ) ) /\ ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) -> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) |
| 22 |
7 18 20 21
|
syl3anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) |
| 23 |
2
|
mrccl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Base ` G ) ) -> ( K ` S ) e. ( SubMnd ` G ) ) |
| 24 |
7 10 23
|
syl2anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) e. ( SubMnd ` G ) ) |
| 25 |
3 1
|
submcmn2 |
|- ( ( K ` S ) e. ( SubMnd ` G ) -> ( H e. CMnd <-> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( H e. CMnd <-> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) ) |
| 27 |
22 26
|
mpbird |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> H e. CMnd ) |