Step |
Hyp |
Ref |
Expression |
1 |
|
cntzspan.z |
|- Z = ( Cntz ` G ) |
2 |
|
cntzspan.k |
|- K = ( mrCls ` ( SubMnd ` G ) ) |
3 |
|
cntzspan.h |
|- H = ( G |`s ( K ` S ) ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
4
|
submacs |
|- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` ( Base ` G ) ) ) |
6 |
5
|
adantr |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( SubMnd ` G ) e. ( ACS ` ( Base ` G ) ) ) |
7 |
6
|
acsmred |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) ) |
8 |
|
simpr |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Z ` S ) ) |
9 |
4 1
|
cntzssv |
|- ( Z ` S ) C_ ( Base ` G ) |
10 |
8 9
|
sstrdi |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Base ` G ) ) |
11 |
4 1
|
cntzsubm |
|- ( ( G e. Mnd /\ S C_ ( Base ` G ) ) -> ( Z ` S ) e. ( SubMnd ` G ) ) |
12 |
10 11
|
syldan |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( Z ` S ) e. ( SubMnd ` G ) ) |
13 |
2
|
mrcsscl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Z ` S ) /\ ( Z ` S ) e. ( SubMnd ` G ) ) -> ( K ` S ) C_ ( Z ` S ) ) |
14 |
7 8 12 13
|
syl3anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Z ` S ) ) |
15 |
7 2
|
mrcssvd |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Base ` G ) ) |
16 |
4 1
|
cntzrec |
|- ( ( ( K ` S ) C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( ( K ` S ) C_ ( Z ` S ) <-> S C_ ( Z ` ( K ` S ) ) ) ) |
17 |
15 10 16
|
syl2anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( ( K ` S ) C_ ( Z ` S ) <-> S C_ ( Z ` ( K ` S ) ) ) ) |
18 |
14 17
|
mpbid |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> S C_ ( Z ` ( K ` S ) ) ) |
19 |
4 1
|
cntzsubm |
|- ( ( G e. Mnd /\ ( K ` S ) C_ ( Base ` G ) ) -> ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) |
20 |
15 19
|
syldan |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) |
21 |
2
|
mrcsscl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Z ` ( K ` S ) ) /\ ( Z ` ( K ` S ) ) e. ( SubMnd ` G ) ) -> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) |
22 |
7 18 20 21
|
syl3anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) |
23 |
2
|
mrccl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` ( Base ` G ) ) /\ S C_ ( Base ` G ) ) -> ( K ` S ) e. ( SubMnd ` G ) ) |
24 |
7 10 23
|
syl2anc |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( K ` S ) e. ( SubMnd ` G ) ) |
25 |
3 1
|
submcmn2 |
|- ( ( K ` S ) e. ( SubMnd ` G ) -> ( H e. CMnd <-> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) ) |
26 |
24 25
|
syl |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> ( H e. CMnd <-> ( K ` S ) C_ ( Z ` ( K ` S ) ) ) ) |
27 |
22 26
|
mpbird |
|- ( ( G e. Mnd /\ S C_ ( Z ` S ) ) -> H e. CMnd ) |