Step |
Hyp |
Ref |
Expression |
1 |
|
cntzrcl.b |
|- B = ( Base ` M ) |
2 |
|
cntzrcl.z |
|- Z = ( Cntz ` M ) |
3 |
|
0ss |
|- (/) C_ B |
4 |
|
sseq1 |
|- ( ( Z ` S ) = (/) -> ( ( Z ` S ) C_ B <-> (/) C_ B ) ) |
5 |
3 4
|
mpbiri |
|- ( ( Z ` S ) = (/) -> ( Z ` S ) C_ B ) |
6 |
|
n0 |
|- ( ( Z ` S ) =/= (/) <-> E. x x e. ( Z ` S ) ) |
7 |
1 2
|
cntzrcl |
|- ( x e. ( Z ` S ) -> ( M e. _V /\ S C_ B ) ) |
8 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
9 |
1 8 2
|
cntzval |
|- ( S C_ B -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } ) |
10 |
7 9
|
simpl2im |
|- ( x e. ( Z ` S ) -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } ) |
11 |
|
ssrab2 |
|- { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } C_ B |
12 |
10 11
|
eqsstrdi |
|- ( x e. ( Z ` S ) -> ( Z ` S ) C_ B ) |
13 |
12
|
exlimiv |
|- ( E. x x e. ( Z ` S ) -> ( Z ` S ) C_ B ) |
14 |
6 13
|
sylbi |
|- ( ( Z ` S ) =/= (/) -> ( Z ` S ) C_ B ) |
15 |
5 14
|
pm2.61ine |
|- ( Z ` S ) C_ B |