| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntzrcl.b |
|- B = ( Base ` M ) |
| 2 |
|
cntzrcl.z |
|- Z = ( Cntz ` M ) |
| 3 |
|
0ss |
|- (/) C_ B |
| 4 |
|
sseq1 |
|- ( ( Z ` S ) = (/) -> ( ( Z ` S ) C_ B <-> (/) C_ B ) ) |
| 5 |
3 4
|
mpbiri |
|- ( ( Z ` S ) = (/) -> ( Z ` S ) C_ B ) |
| 6 |
|
n0 |
|- ( ( Z ` S ) =/= (/) <-> E. x x e. ( Z ` S ) ) |
| 7 |
1 2
|
cntzrcl |
|- ( x e. ( Z ` S ) -> ( M e. _V /\ S C_ B ) ) |
| 8 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 9 |
1 8 2
|
cntzval |
|- ( S C_ B -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } ) |
| 10 |
7 9
|
simpl2im |
|- ( x e. ( Z ` S ) -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } ) |
| 11 |
|
ssrab2 |
|- { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } C_ B |
| 12 |
10 11
|
eqsstrdi |
|- ( x e. ( Z ` S ) -> ( Z ` S ) C_ B ) |
| 13 |
12
|
exlimiv |
|- ( E. x x e. ( Z ` S ) -> ( Z ` S ) C_ B ) |
| 14 |
6 13
|
sylbi |
|- ( ( Z ` S ) =/= (/) -> ( Z ` S ) C_ B ) |
| 15 |
5 14
|
pm2.61ine |
|- ( Z ` S ) C_ B |