Metamath Proof Explorer


Theorem cntzssv

Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzrcl.b
|- B = ( Base ` M )
cntzrcl.z
|- Z = ( Cntz ` M )
Assertion cntzssv
|- ( Z ` S ) C_ B

Proof

Step Hyp Ref Expression
1 cntzrcl.b
 |-  B = ( Base ` M )
2 cntzrcl.z
 |-  Z = ( Cntz ` M )
3 0ss
 |-  (/) C_ B
4 sseq1
 |-  ( ( Z ` S ) = (/) -> ( ( Z ` S ) C_ B <-> (/) C_ B ) )
5 3 4 mpbiri
 |-  ( ( Z ` S ) = (/) -> ( Z ` S ) C_ B )
6 n0
 |-  ( ( Z ` S ) =/= (/) <-> E. x x e. ( Z ` S ) )
7 1 2 cntzrcl
 |-  ( x e. ( Z ` S ) -> ( M e. _V /\ S C_ B ) )
8 eqid
 |-  ( +g ` M ) = ( +g ` M )
9 1 8 2 cntzval
 |-  ( S C_ B -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } )
10 7 9 simpl2im
 |-  ( x e. ( Z ` S ) -> ( Z ` S ) = { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } )
11 ssrab2
 |-  { x e. B | A. y e. S ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) } C_ B
12 10 11 eqsstrdi
 |-  ( x e. ( Z ` S ) -> ( Z ` S ) C_ B )
13 12 exlimiv
 |-  ( E. x x e. ( Z ` S ) -> ( Z ` S ) C_ B )
14 6 13 sylbi
 |-  ( ( Z ` S ) =/= (/) -> ( Z ` S ) C_ B )
15 5 14 pm2.61ine
 |-  ( Z ` S ) C_ B