Step |
Hyp |
Ref |
Expression |
1 |
|
cntzsubrng.b |
|- B = ( Base ` R ) |
2 |
|
cntzsubrng.m |
|- M = ( mulGrp ` R ) |
3 |
|
cntzsubrng.z |
|- Z = ( Cntz ` M ) |
4 |
2 1
|
mgpbas |
|- B = ( Base ` M ) |
5 |
4 3
|
cntzssv |
|- ( Z ` S ) C_ B |
6 |
5
|
a1i |
|- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) C_ B ) |
7 |
|
simpll |
|- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> R e. Rng ) |
8 |
|
ssel2 |
|- ( ( S C_ B /\ z e. S ) -> z e. B ) |
9 |
8
|
adantll |
|- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> z e. B ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
12 |
1 10 11
|
rnglz |
|- ( ( R e. Rng /\ z e. B ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) |
13 |
7 9 12
|
syl2anc |
|- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( 0g ` R ) ) |
14 |
1 10 11
|
rngrz |
|- ( ( R e. Rng /\ z e. B ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
15 |
7 9 14
|
syl2anc |
|- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( z ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
16 |
13 15
|
eqtr4d |
|- ( ( ( R e. Rng /\ S C_ B ) /\ z e. S ) -> ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) |
17 |
16
|
ralrimiva |
|- ( ( R e. Rng /\ S C_ B ) -> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) |
18 |
|
simpr |
|- ( ( R e. Rng /\ S C_ B ) -> S C_ B ) |
19 |
1 11
|
rng0cl |
|- ( R e. Rng -> ( 0g ` R ) e. B ) |
20 |
19
|
adantr |
|- ( ( R e. Rng /\ S C_ B ) -> ( 0g ` R ) e. B ) |
21 |
2 10
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
22 |
4 21 3
|
cntzel |
|- ( ( S C_ B /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) |
23 |
18 20 22
|
syl2anc |
|- ( ( R e. Rng /\ S C_ B ) -> ( ( 0g ` R ) e. ( Z ` S ) <-> A. z e. S ( ( 0g ` R ) ( .r ` R ) z ) = ( z ( .r ` R ) ( 0g ` R ) ) ) ) |
24 |
17 23
|
mpbird |
|- ( ( R e. Rng /\ S C_ B ) -> ( 0g ` R ) e. ( Z ` S ) ) |
25 |
24
|
ne0d |
|- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) =/= (/) ) |
26 |
|
simpl2 |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) |
27 |
21 3
|
cntzi |
|- ( ( x e. ( Z ` S ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
28 |
26 27
|
sylancom |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
29 |
|
simpl3 |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. ( Z ` S ) ) |
30 |
21 3
|
cntzi |
|- ( ( y e. ( Z ` S ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) |
31 |
29 30
|
sylancom |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( y ( .r ` R ) z ) = ( z ( .r ` R ) y ) ) |
32 |
28 31
|
oveq12d |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
33 |
|
simpl1l |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> R e. Rng ) |
34 |
5 26
|
sselid |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) |
35 |
5 29
|
sselid |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> y e. B ) |
36 |
|
simp1r |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> S C_ B ) |
37 |
36
|
sselda |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) |
38 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
39 |
1 38 10
|
rngdir |
|- ( ( R e. Rng /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
40 |
33 34 35 37 39
|
syl13anc |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) |
41 |
1 38 10
|
rngdi |
|- ( ( R e. Rng /\ ( z e. B /\ x e. B /\ y e. B ) ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
42 |
33 37 34 35 41
|
syl13anc |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( x ( +g ` R ) y ) ) = ( ( z ( .r ` R ) x ) ( +g ` R ) ( z ( .r ` R ) y ) ) ) |
43 |
32 40 42
|
3eqtr4d |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) /\ z e. S ) -> ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) |
44 |
43
|
ralrimiva |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) |
45 |
|
simp1l |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> R e. Rng ) |
46 |
|
simp2 |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
47 |
5 46
|
sselid |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> x e. B ) |
48 |
|
simp3 |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. ( Z ` S ) ) |
49 |
5 48
|
sselid |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> y e. B ) |
50 |
1 38
|
rngacl |
|- ( ( R e. Rng /\ x e. B /\ y e. B ) -> ( x ( +g ` R ) y ) e. B ) |
51 |
45 47 49 50
|
syl3anc |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. B ) |
52 |
4 21 3
|
cntzel |
|- ( ( S C_ B /\ ( x ( +g ` R ) y ) e. B ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) |
53 |
36 51 52
|
syl2anc |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( ( x ( +g ` R ) y ) e. ( Z ` S ) <-> A. z e. S ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( z ( .r ` R ) ( x ( +g ` R ) y ) ) ) ) |
54 |
44 53
|
mpbird |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
55 |
54
|
3expa |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ y e. ( Z ` S ) ) -> ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
56 |
55
|
ralrimiva |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) ) |
57 |
27
|
adantll |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( x ( .r ` R ) z ) = ( z ( .r ` R ) x ) ) |
58 |
57
|
fveq2d |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) |
59 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
60 |
|
simplll |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> R e. Rng ) |
61 |
|
simplr |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. ( Z ` S ) ) |
62 |
5 61
|
sselid |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> x e. B ) |
63 |
|
simplr |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> S C_ B ) |
64 |
63
|
sselda |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> z e. B ) |
65 |
1 10 59 60 62 64
|
rngmneg1 |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( ( invg ` R ) ` ( x ( .r ` R ) z ) ) ) |
66 |
1 10 59 60 64 62
|
rngmneg2 |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) = ( ( invg ` R ) ` ( z ( .r ` R ) x ) ) ) |
67 |
58 65 66
|
3eqtr4d |
|- ( ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) /\ z e. S ) -> ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) |
68 |
67
|
ralrimiva |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) |
69 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
70 |
69
|
ad2antrr |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> R e. Grp ) |
71 |
|
simpr |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. ( Z ` S ) ) |
72 |
5 71
|
sselid |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> x e. B ) |
73 |
1 59 70 72
|
grpinvcld |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. B ) |
74 |
4 21 3
|
cntzel |
|- ( ( S C_ B /\ ( ( invg ` R ) ` x ) e. B ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) |
75 |
63 73 74
|
syl2anc |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( ( invg ` R ) ` x ) e. ( Z ` S ) <-> A. z e. S ( ( ( invg ` R ) ` x ) ( .r ` R ) z ) = ( z ( .r ` R ) ( ( invg ` R ) ` x ) ) ) ) |
76 |
68 75
|
mpbird |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( ( invg ` R ) ` x ) e. ( Z ` S ) ) |
77 |
56 76
|
jca |
|- ( ( ( R e. Rng /\ S C_ B ) /\ x e. ( Z ` S ) ) -> ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) |
78 |
77
|
ralrimiva |
|- ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) |
79 |
69
|
adantr |
|- ( ( R e. Rng /\ S C_ B ) -> R e. Grp ) |
80 |
1 38 59
|
issubg2 |
|- ( R e. Grp -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) |
81 |
79 80
|
syl |
|- ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubGrp ` R ) <-> ( ( Z ` S ) C_ B /\ ( Z ` S ) =/= (/) /\ A. x e. ( Z ` S ) ( A. y e. ( Z ` S ) ( x ( +g ` R ) y ) e. ( Z ` S ) /\ ( ( invg ` R ) ` x ) e. ( Z ` S ) ) ) ) ) |
82 |
6 25 78 81
|
mpbir3and |
|- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubGrp ` R ) ) |
83 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
84 |
83
|
rngmgp |
|- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
85 |
83 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
86 |
85
|
sseq2i |
|- ( S C_ B <-> S C_ ( Base ` ( mulGrp ` R ) ) ) |
87 |
86
|
biimpi |
|- ( S C_ B -> S C_ ( Base ` ( mulGrp ` R ) ) ) |
88 |
|
eqid |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
89 |
2
|
fveq2i |
|- ( Cntz ` M ) = ( Cntz ` ( mulGrp ` R ) ) |
90 |
3 89
|
eqtri |
|- Z = ( Cntz ` ( mulGrp ` R ) ) |
91 |
|
eqid |
|- ( Z ` S ) = ( Z ` S ) |
92 |
88 90 91
|
cntzsgrpcl |
|- ( ( ( mulGrp ` R ) e. Smgrp /\ S C_ ( Base ` ( mulGrp ` R ) ) ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
93 |
84 87 92
|
syl2an |
|- ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
94 |
83 10
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
95 |
94
|
oveqi |
|- ( x ( .r ` R ) y ) = ( x ( +g ` ( mulGrp ` R ) ) y ) |
96 |
95
|
eleq1i |
|- ( ( x ( .r ` R ) y ) e. ( Z ` S ) <-> ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
97 |
96
|
2ralbii |
|- ( A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) <-> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( +g ` ( mulGrp ` R ) ) y ) e. ( Z ` S ) ) |
98 |
93 97
|
sylibr |
|- ( ( R e. Rng /\ S C_ B ) -> A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) |
99 |
1 10
|
issubrng2 |
|- ( R e. Rng -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) |
100 |
99
|
adantr |
|- ( ( R e. Rng /\ S C_ B ) -> ( ( Z ` S ) e. ( SubRng ` R ) <-> ( ( Z ` S ) e. ( SubGrp ` R ) /\ A. x e. ( Z ` S ) A. y e. ( Z ` S ) ( x ( .r ` R ) y ) e. ( Z ` S ) ) ) ) |
101 |
82 98 100
|
mpbir2and |
|- ( ( R e. Rng /\ S C_ B ) -> ( Z ` S ) e. ( SubRng ` R ) ) |