Metamath Proof Explorer


Theorem cnvbracl

Description: Closure of the converse of the bra function. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion cnvbracl
|- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H )

Proof

Step Hyp Ref Expression
1 bra11
 |-  bra : ~H -1-1-onto-> ( LinFn i^i ContFn )
2 f1ocnvdm
 |-  ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` T ) e. ~H )
3 1 2 mpan
 |-  ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H )