Step |
Hyp |
Ref |
Expression |
1 |
|
cnvbracl |
|- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H ) |
2 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
3 |
|
brafnmul |
|- ( ( ( * ` A ) e. CC /\ ( `' bra ` T ) e. ~H ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( ( * ` ( * ` A ) ) .fn ( bra ` ( `' bra ` T ) ) ) ) |
4 |
2 3
|
sylan |
|- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( ( * ` ( * ` A ) ) .fn ( bra ` ( `' bra ` T ) ) ) ) |
5 |
|
cjcj |
|- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
6 |
5
|
adantr |
|- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( * ` ( * ` A ) ) = A ) |
7 |
6
|
oveq1d |
|- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( ( * ` ( * ` A ) ) .fn ( bra ` ( `' bra ` T ) ) ) = ( A .fn ( bra ` ( `' bra ` T ) ) ) ) |
8 |
4 7
|
eqtrd |
|- ( ( A e. CC /\ ( `' bra ` T ) e. ~H ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( A .fn ( bra ` ( `' bra ` T ) ) ) ) |
9 |
1 8
|
sylan2 |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( A .fn ( bra ` ( `' bra ` T ) ) ) ) |
10 |
|
bracnvbra |
|- ( T e. ( LinFn i^i ContFn ) -> ( bra ` ( `' bra ` T ) ) = T ) |
11 |
10
|
oveq2d |
|- ( T e. ( LinFn i^i ContFn ) -> ( A .fn ( bra ` ( `' bra ` T ) ) ) = ( A .fn T ) ) |
12 |
11
|
adantl |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( A .fn ( bra ` ( `' bra ` T ) ) ) = ( A .fn T ) ) |
13 |
9 12
|
eqtrd |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) = ( A .fn T ) ) |
14 |
13
|
fveq2d |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) ) = ( `' bra ` ( A .fn T ) ) ) |
15 |
|
hvmulcl |
|- ( ( ( * ` A ) e. CC /\ ( `' bra ` T ) e. ~H ) -> ( ( * ` A ) .h ( `' bra ` T ) ) e. ~H ) |
16 |
2 1 15
|
syl2an |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( ( * ` A ) .h ( `' bra ` T ) ) e. ~H ) |
17 |
|
cnvbrabra |
|- ( ( ( * ` A ) .h ( `' bra ` T ) ) e. ~H -> ( `' bra ` ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |
18 |
16 17
|
syl |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( bra ` ( ( * ` A ) .h ( `' bra ` T ) ) ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |
19 |
14 18
|
eqtr3d |
|- ( ( A e. CC /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( A .fn T ) ) = ( ( * ` A ) .h ( `' bra ` T ) ) ) |