| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bra11 |  |-  bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) | 
						
							| 2 |  | f1ocnvfv |  |-  ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ y e. ~H ) -> ( ( bra ` y ) = T -> ( `' bra ` T ) = y ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( y e. ~H -> ( ( bra ` y ) = T -> ( `' bra ` T ) = y ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( y e. ~H /\ ( bra ` y ) = T ) -> ( `' bra ` T ) = y ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( y e. ~H /\ ( bra ` y ) = T ) -> ( x .ih ( `' bra ` T ) ) = ( x .ih y ) ) | 
						
							| 6 | 5 | adantll |  |-  ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( x .ih ( `' bra ` T ) ) = ( x .ih y ) ) | 
						
							| 7 |  | braval |  |-  ( ( y e. ~H /\ x e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) | 
						
							| 9 | 8 | adantll |  |-  ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) | 
						
							| 11 |  | fveq1 |  |-  ( ( bra ` y ) = T -> ( ( bra ` y ) ` x ) = ( T ` x ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( ( bra ` y ) ` x ) = ( T ` x ) ) | 
						
							| 13 | 6 10 12 | 3eqtr2rd |  |-  ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) | 
						
							| 14 |  | rnbra |  |-  ran bra = ( LinFn i^i ContFn ) | 
						
							| 15 | 14 | eleq2i |  |-  ( T e. ran bra <-> T e. ( LinFn i^i ContFn ) ) | 
						
							| 16 |  | f1of |  |-  ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) -> bra : ~H --> ( LinFn i^i ContFn ) ) | 
						
							| 17 | 1 16 | ax-mp |  |-  bra : ~H --> ( LinFn i^i ContFn ) | 
						
							| 18 |  | ffn |  |-  ( bra : ~H --> ( LinFn i^i ContFn ) -> bra Fn ~H ) | 
						
							| 19 | 17 18 | ax-mp |  |-  bra Fn ~H | 
						
							| 20 |  | fvelrnb |  |-  ( bra Fn ~H -> ( T e. ran bra <-> E. y e. ~H ( bra ` y ) = T ) ) | 
						
							| 21 | 19 20 | ax-mp |  |-  ( T e. ran bra <-> E. y e. ~H ( bra ` y ) = T ) | 
						
							| 22 | 15 21 | sylbb1 |  |-  ( T e. ( LinFn i^i ContFn ) -> E. y e. ~H ( bra ` y ) = T ) | 
						
							| 23 | 22 | adantr |  |-  ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) -> E. y e. ~H ( bra ` y ) = T ) | 
						
							| 24 | 13 23 | r19.29a |  |-  ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) -> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) | 
						
							| 25 | 24 | ralrimiva |  |-  ( T e. ( LinFn i^i ContFn ) -> A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) | 
						
							| 26 |  | f1ocnvdm |  |-  ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` T ) e. ~H ) | 
						
							| 27 | 1 26 | mpan |  |-  ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H ) | 
						
							| 28 |  | riesz4 |  |-  ( T e. ( LinFn i^i ContFn ) -> E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) | 
						
							| 29 |  | oveq2 |  |-  ( y = ( `' bra ` T ) -> ( x .ih y ) = ( x .ih ( `' bra ` T ) ) ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( y = ( `' bra ` T ) -> ( ( T ` x ) = ( x .ih y ) <-> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) ) | 
						
							| 31 | 30 | ralbidv |  |-  ( y = ( `' bra ` T ) -> ( A. x e. ~H ( T ` x ) = ( x .ih y ) <-> A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) ) | 
						
							| 32 | 31 | riota2 |  |-  ( ( ( `' bra ` T ) e. ~H /\ E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) -> ( A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) <-> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) ) | 
						
							| 33 | 27 28 32 | syl2anc |  |-  ( T e. ( LinFn i^i ContFn ) -> ( A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) <-> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) ) | 
						
							| 34 | 25 33 | mpbid |  |-  ( T e. ( LinFn i^i ContFn ) -> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) | 
						
							| 35 | 34 | eqcomd |  |-  ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) |