Step |
Hyp |
Ref |
Expression |
1 |
|
bra11 |
|- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |
2 |
|
f1ocnvfv |
|- ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ y e. ~H ) -> ( ( bra ` y ) = T -> ( `' bra ` T ) = y ) ) |
3 |
1 2
|
mpan |
|- ( y e. ~H -> ( ( bra ` y ) = T -> ( `' bra ` T ) = y ) ) |
4 |
3
|
imp |
|- ( ( y e. ~H /\ ( bra ` y ) = T ) -> ( `' bra ` T ) = y ) |
5 |
4
|
oveq2d |
|- ( ( y e. ~H /\ ( bra ` y ) = T ) -> ( x .ih ( `' bra ` T ) ) = ( x .ih y ) ) |
6 |
5
|
adantll |
|- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( x .ih ( `' bra ` T ) ) = ( x .ih y ) ) |
7 |
|
braval |
|- ( ( y e. ~H /\ x e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
8 |
7
|
ancoms |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
9 |
8
|
adantll |
|- ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
10 |
9
|
adantr |
|- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
11 |
|
fveq1 |
|- ( ( bra ` y ) = T -> ( ( bra ` y ) ` x ) = ( T ` x ) ) |
12 |
11
|
adantl |
|- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( ( bra ` y ) ` x ) = ( T ` x ) ) |
13 |
6 10 12
|
3eqtr2rd |
|- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) |
14 |
|
rnbra |
|- ran bra = ( LinFn i^i ContFn ) |
15 |
14
|
eleq2i |
|- ( T e. ran bra <-> T e. ( LinFn i^i ContFn ) ) |
16 |
|
f1of |
|- ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) -> bra : ~H --> ( LinFn i^i ContFn ) ) |
17 |
1 16
|
ax-mp |
|- bra : ~H --> ( LinFn i^i ContFn ) |
18 |
|
ffn |
|- ( bra : ~H --> ( LinFn i^i ContFn ) -> bra Fn ~H ) |
19 |
17 18
|
ax-mp |
|- bra Fn ~H |
20 |
|
fvelrnb |
|- ( bra Fn ~H -> ( T e. ran bra <-> E. y e. ~H ( bra ` y ) = T ) ) |
21 |
19 20
|
ax-mp |
|- ( T e. ran bra <-> E. y e. ~H ( bra ` y ) = T ) |
22 |
15 21
|
sylbb1 |
|- ( T e. ( LinFn i^i ContFn ) -> E. y e. ~H ( bra ` y ) = T ) |
23 |
22
|
adantr |
|- ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) -> E. y e. ~H ( bra ` y ) = T ) |
24 |
13 23
|
r19.29a |
|- ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) -> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) |
25 |
24
|
ralrimiva |
|- ( T e. ( LinFn i^i ContFn ) -> A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) |
26 |
|
f1ocnvdm |
|- ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` T ) e. ~H ) |
27 |
1 26
|
mpan |
|- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H ) |
28 |
|
riesz4 |
|- ( T e. ( LinFn i^i ContFn ) -> E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) |
29 |
|
oveq2 |
|- ( y = ( `' bra ` T ) -> ( x .ih y ) = ( x .ih ( `' bra ` T ) ) ) |
30 |
29
|
eqeq2d |
|- ( y = ( `' bra ` T ) -> ( ( T ` x ) = ( x .ih y ) <-> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) ) |
31 |
30
|
ralbidv |
|- ( y = ( `' bra ` T ) -> ( A. x e. ~H ( T ` x ) = ( x .ih y ) <-> A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) ) |
32 |
31
|
riota2 |
|- ( ( ( `' bra ` T ) e. ~H /\ E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) -> ( A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) <-> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) ) |
33 |
27 28 32
|
syl2anc |
|- ( T e. ( LinFn i^i ContFn ) -> ( A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) <-> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) ) |
34 |
25 33
|
mpbid |
|- ( T e. ( LinFn i^i ContFn ) -> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) |
35 |
34
|
eqcomd |
|- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) |