Step |
Hyp |
Ref |
Expression |
1 |
|
cnvin |
|- `' ( `' A i^i `' ( _V X. _V ) ) = ( `' `' A i^i `' `' ( _V X. _V ) ) |
2 |
|
cnvin |
|- `' ( A i^i ( _V X. _V ) ) = ( `' A i^i `' ( _V X. _V ) ) |
3 |
2
|
cnveqi |
|- `' `' ( A i^i ( _V X. _V ) ) = `' ( `' A i^i `' ( _V X. _V ) ) |
4 |
|
relcnv |
|- Rel `' `' A |
5 |
|
df-rel |
|- ( Rel `' `' A <-> `' `' A C_ ( _V X. _V ) ) |
6 |
4 5
|
mpbi |
|- `' `' A C_ ( _V X. _V ) |
7 |
|
relxp |
|- Rel ( _V X. _V ) |
8 |
|
dfrel2 |
|- ( Rel ( _V X. _V ) <-> `' `' ( _V X. _V ) = ( _V X. _V ) ) |
9 |
7 8
|
mpbi |
|- `' `' ( _V X. _V ) = ( _V X. _V ) |
10 |
6 9
|
sseqtrri |
|- `' `' A C_ `' `' ( _V X. _V ) |
11 |
|
dfss |
|- ( `' `' A C_ `' `' ( _V X. _V ) <-> `' `' A = ( `' `' A i^i `' `' ( _V X. _V ) ) ) |
12 |
10 11
|
mpbi |
|- `' `' A = ( `' `' A i^i `' `' ( _V X. _V ) ) |
13 |
1 3 12
|
3eqtr4ri |
|- `' `' A = `' `' ( A i^i ( _V X. _V ) ) |
14 |
|
relinxp |
|- Rel ( A i^i ( _V X. _V ) ) |
15 |
|
dfrel2 |
|- ( Rel ( A i^i ( _V X. _V ) ) <-> `' `' ( A i^i ( _V X. _V ) ) = ( A i^i ( _V X. _V ) ) ) |
16 |
14 15
|
mpbi |
|- `' `' ( A i^i ( _V X. _V ) ) = ( A i^i ( _V X. _V ) ) |
17 |
13 16
|
eqtri |
|- `' `' A = ( A i^i ( _V X. _V ) ) |