Metamath Proof Explorer


Theorem cnvcnv3

Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Assertion cnvcnv3
|- `' `' R = { <. x , y >. | x R y }

Proof

Step Hyp Ref Expression
1 df-cnv
 |-  `' `' R = { <. x , y >. | y `' R x }
2 vex
 |-  y e. _V
3 vex
 |-  x e. _V
4 2 3 brcnv
 |-  ( y `' R x <-> x R y )
5 4 opabbii
 |-  { <. x , y >. | y `' R x } = { <. x , y >. | x R y }
6 1 5 eqtri
 |-  `' `' R = { <. x , y >. | x R y }