| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relcnv |  |-  Rel `' ( `' A o. B ) | 
						
							| 2 |  | relco |  |-  Rel ( `' B o. A ) | 
						
							| 3 |  | vex |  |-  z e. _V | 
						
							| 4 |  | vex |  |-  y e. _V | 
						
							| 5 | 3 4 | brcnv |  |-  ( z `' B y <-> y B z ) | 
						
							| 6 | 5 | bicomi |  |-  ( y B z <-> z `' B y ) | 
						
							| 7 |  | vex |  |-  x e. _V | 
						
							| 8 | 3 7 | brcnv |  |-  ( z `' A x <-> x A z ) | 
						
							| 9 | 6 8 | anbi12ci |  |-  ( ( y B z /\ z `' A x ) <-> ( x A z /\ z `' B y ) ) | 
						
							| 10 | 9 | exbii |  |-  ( E. z ( y B z /\ z `' A x ) <-> E. z ( x A z /\ z `' B y ) ) | 
						
							| 11 | 7 4 | opelcnv |  |-  ( <. x , y >. e. `' ( `' A o. B ) <-> <. y , x >. e. ( `' A o. B ) ) | 
						
							| 12 | 4 7 | opelco |  |-  ( <. y , x >. e. ( `' A o. B ) <-> E. z ( y B z /\ z `' A x ) ) | 
						
							| 13 | 11 12 | bitri |  |-  ( <. x , y >. e. `' ( `' A o. B ) <-> E. z ( y B z /\ z `' A x ) ) | 
						
							| 14 | 7 4 | opelco |  |-  ( <. x , y >. e. ( `' B o. A ) <-> E. z ( x A z /\ z `' B y ) ) | 
						
							| 15 | 10 13 14 | 3bitr4i |  |-  ( <. x , y >. e. `' ( `' A o. B ) <-> <. x , y >. e. ( `' B o. A ) ) | 
						
							| 16 | 1 2 15 | eqrelriiv |  |-  `' ( `' A o. B ) = ( `' B o. A ) |