| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relcnv |  |-  Rel `' ( A o. `' B ) | 
						
							| 2 |  | relco |  |-  Rel ( B o. `' A ) | 
						
							| 3 |  | vex |  |-  y e. _V | 
						
							| 4 |  | vex |  |-  z e. _V | 
						
							| 5 | 3 4 | brcnv |  |-  ( y `' B z <-> z B y ) | 
						
							| 6 |  | vex |  |-  x e. _V | 
						
							| 7 | 6 4 | brcnv |  |-  ( x `' A z <-> z A x ) | 
						
							| 8 | 7 | bicomi |  |-  ( z A x <-> x `' A z ) | 
						
							| 9 | 5 8 | anbi12ci |  |-  ( ( y `' B z /\ z A x ) <-> ( x `' A z /\ z B y ) ) | 
						
							| 10 | 9 | exbii |  |-  ( E. z ( y `' B z /\ z A x ) <-> E. z ( x `' A z /\ z B y ) ) | 
						
							| 11 | 6 3 | opelcnv |  |-  ( <. x , y >. e. `' ( A o. `' B ) <-> <. y , x >. e. ( A o. `' B ) ) | 
						
							| 12 | 3 6 | opelco |  |-  ( <. y , x >. e. ( A o. `' B ) <-> E. z ( y `' B z /\ z A x ) ) | 
						
							| 13 | 11 12 | bitri |  |-  ( <. x , y >. e. `' ( A o. `' B ) <-> E. z ( y `' B z /\ z A x ) ) | 
						
							| 14 | 6 3 | opelco |  |-  ( <. x , y >. e. ( B o. `' A ) <-> E. z ( x `' A z /\ z B y ) ) | 
						
							| 15 | 10 13 14 | 3bitr4i |  |-  ( <. x , y >. e. `' ( A o. `' B ) <-> <. x , y >. e. ( B o. `' A ) ) | 
						
							| 16 | 1 2 15 | eqrelriiv |  |-  `' ( A o. `' B ) = ( B o. `' A ) |