| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relcnv |  |-  Rel `' A | 
						
							| 2 |  | ctex |  |-  ( A ~<_ _om -> A e. _V ) | 
						
							| 3 |  | cnvexg |  |-  ( A e. _V -> `' A e. _V ) | 
						
							| 4 | 2 3 | syl |  |-  ( A ~<_ _om -> `' A e. _V ) | 
						
							| 5 |  | cnven |  |-  ( ( Rel `' A /\ `' A e. _V ) -> `' A ~~ `' `' A ) | 
						
							| 6 | 1 4 5 | sylancr |  |-  ( A ~<_ _om -> `' A ~~ `' `' A ) | 
						
							| 7 |  | cnvcnvss |  |-  `' `' A C_ A | 
						
							| 8 |  | ssdomg |  |-  ( A e. _V -> ( `' `' A C_ A -> `' `' A ~<_ A ) ) | 
						
							| 9 | 2 7 8 | mpisyl |  |-  ( A ~<_ _om -> `' `' A ~<_ A ) | 
						
							| 10 |  | endomtr |  |-  ( ( `' A ~~ `' `' A /\ `' `' A ~<_ A ) -> `' A ~<_ A ) | 
						
							| 11 | 6 9 10 | syl2anc |  |-  ( A ~<_ _om -> `' A ~<_ A ) | 
						
							| 12 |  | domtr |  |-  ( ( `' A ~<_ A /\ A ~<_ _om ) -> `' A ~<_ _om ) | 
						
							| 13 | 11 12 | mpancom |  |-  ( A ~<_ _om -> `' A ~<_ _om ) |