Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' ( A \ B ) |
2 |
|
difss |
|- ( `' A \ `' B ) C_ `' A |
3 |
|
relcnv |
|- Rel `' A |
4 |
|
relss |
|- ( ( `' A \ `' B ) C_ `' A -> ( Rel `' A -> Rel ( `' A \ `' B ) ) ) |
5 |
2 3 4
|
mp2 |
|- Rel ( `' A \ `' B ) |
6 |
|
eldif |
|- ( <. y , x >. e. ( A \ B ) <-> ( <. y , x >. e. A /\ -. <. y , x >. e. B ) ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
opelcnv |
|- ( <. x , y >. e. `' ( A \ B ) <-> <. y , x >. e. ( A \ B ) ) |
10 |
|
eldif |
|- ( <. x , y >. e. ( `' A \ `' B ) <-> ( <. x , y >. e. `' A /\ -. <. x , y >. e. `' B ) ) |
11 |
7 8
|
opelcnv |
|- ( <. x , y >. e. `' A <-> <. y , x >. e. A ) |
12 |
7 8
|
opelcnv |
|- ( <. x , y >. e. `' B <-> <. y , x >. e. B ) |
13 |
12
|
notbii |
|- ( -. <. x , y >. e. `' B <-> -. <. y , x >. e. B ) |
14 |
11 13
|
anbi12i |
|- ( ( <. x , y >. e. `' A /\ -. <. x , y >. e. `' B ) <-> ( <. y , x >. e. A /\ -. <. y , x >. e. B ) ) |
15 |
10 14
|
bitri |
|- ( <. x , y >. e. ( `' A \ `' B ) <-> ( <. y , x >. e. A /\ -. <. y , x >. e. B ) ) |
16 |
6 9 15
|
3bitr4i |
|- ( <. x , y >. e. `' ( A \ B ) <-> <. x , y >. e. ( `' A \ `' B ) ) |
17 |
1 5 16
|
eqrelriiv |
|- `' ( A \ B ) = ( `' A \ `' B ) |