| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' A |
| 2 |
|
relssdmrn |
|- ( Rel `' A -> `' A C_ ( dom `' A X. ran `' A ) ) |
| 3 |
1 2
|
ax-mp |
|- `' A C_ ( dom `' A X. ran `' A ) |
| 4 |
|
df-rn |
|- ran A = dom `' A |
| 5 |
|
rnexg |
|- ( A e. V -> ran A e. _V ) |
| 6 |
4 5
|
eqeltrrid |
|- ( A e. V -> dom `' A e. _V ) |
| 7 |
|
dfdm4 |
|- dom A = ran `' A |
| 8 |
|
dmexg |
|- ( A e. V -> dom A e. _V ) |
| 9 |
7 8
|
eqeltrrid |
|- ( A e. V -> ran `' A e. _V ) |
| 10 |
6 9
|
xpexd |
|- ( A e. V -> ( dom `' A X. ran `' A ) e. _V ) |
| 11 |
|
ssexg |
|- ( ( `' A C_ ( dom `' A X. ran `' A ) /\ ( dom `' A X. ran `' A ) e. _V ) -> `' A e. _V ) |
| 12 |
3 10 11
|
sylancr |
|- ( A e. V -> `' A e. _V ) |