Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = U. `' { B } ) |
2 |
|
1st2nd |
|- ( ( Rel A /\ B e. A ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
3 |
2
|
adantrr |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) |
4 |
3
|
sneqd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> { B } = { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
5 |
4
|
cnveqd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> `' { B } = `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
6 |
5
|
unieqd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> U. `' { B } = U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
7 |
1 6
|
eqtrd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } ) |
8 |
|
opswap |
|- U. `' { <. ( 1st ` B ) , ( 2nd ` B ) >. } = <. ( 2nd ` B ) , ( 1st ` B ) >. |
9 |
7 8
|
eqtrdi |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C = <. ( 2nd ` B ) , ( 1st ` B ) >. ) |
10 |
|
simprl |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B e. A ) |
11 |
3 10
|
eqeltrrd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> <. ( 1st ` B ) , ( 2nd ` B ) >. e. A ) |
12 |
|
fvex |
|- ( 2nd ` B ) e. _V |
13 |
|
fvex |
|- ( 1st ` B ) e. _V |
14 |
12 13
|
opelcnv |
|- ( <. ( 2nd ` B ) , ( 1st ` B ) >. e. `' A <-> <. ( 1st ` B ) , ( 2nd ` B ) >. e. A ) |
15 |
11 14
|
sylibr |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> <. ( 2nd ` B ) , ( 1st ` B ) >. e. `' A ) |
16 |
9 15
|
eqeltrd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> C e. `' A ) |
17 |
|
opswap |
|- U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } = <. ( 1st ` B ) , ( 2nd ` B ) >. |
18 |
17
|
eqcomi |
|- <. ( 1st ` B ) , ( 2nd ` B ) >. = U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } |
19 |
9
|
sneqd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> { C } = { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) |
20 |
19
|
cnveqd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> `' { C } = `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) |
21 |
20
|
unieqd |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> U. `' { C } = U. `' { <. ( 2nd ` B ) , ( 1st ` B ) >. } ) |
22 |
18 3 21
|
3eqtr4a |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> B = U. `' { C } ) |
23 |
16 22
|
jca |
|- ( ( Rel A /\ ( B e. A /\ C = U. `' { B } ) ) -> ( C e. `' A /\ B = U. `' { C } ) ) |