| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnveq |  |-  ( x = (/) -> `' x = `' (/) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( x = (/) -> ( `' x e. Fin <-> `' (/) e. Fin ) ) | 
						
							| 3 |  | cnveq |  |-  ( x = y -> `' x = `' y ) | 
						
							| 4 | 3 | eleq1d |  |-  ( x = y -> ( `' x e. Fin <-> `' y e. Fin ) ) | 
						
							| 5 |  | cnveq |  |-  ( x = ( y u. { z } ) -> `' x = `' ( y u. { z } ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( x = ( y u. { z } ) -> ( `' x e. Fin <-> `' ( y u. { z } ) e. Fin ) ) | 
						
							| 7 |  | cnveq |  |-  ( x = A -> `' x = `' A ) | 
						
							| 8 | 7 | eleq1d |  |-  ( x = A -> ( `' x e. Fin <-> `' A e. Fin ) ) | 
						
							| 9 |  | cnv0 |  |-  `' (/) = (/) | 
						
							| 10 |  | 0fi |  |-  (/) e. Fin | 
						
							| 11 | 9 10 | eqeltri |  |-  `' (/) e. Fin | 
						
							| 12 |  | cnvun |  |-  `' ( y u. { z } ) = ( `' y u. `' { z } ) | 
						
							| 13 |  | elvv |  |-  ( z e. ( _V X. _V ) <-> E. u E. v z = <. u , v >. ) | 
						
							| 14 |  | sneq |  |-  ( z = <. u , v >. -> { z } = { <. u , v >. } ) | 
						
							| 15 |  | cnveq |  |-  ( { z } = { <. u , v >. } -> `' { z } = `' { <. u , v >. } ) | 
						
							| 16 |  | vex |  |-  u e. _V | 
						
							| 17 |  | vex |  |-  v e. _V | 
						
							| 18 | 16 17 | cnvsn |  |-  `' { <. u , v >. } = { <. v , u >. } | 
						
							| 19 | 15 18 | eqtrdi |  |-  ( { z } = { <. u , v >. } -> `' { z } = { <. v , u >. } ) | 
						
							| 20 | 14 19 | syl |  |-  ( z = <. u , v >. -> `' { z } = { <. v , u >. } ) | 
						
							| 21 |  | snfi |  |-  { <. v , u >. } e. Fin | 
						
							| 22 | 20 21 | eqeltrdi |  |-  ( z = <. u , v >. -> `' { z } e. Fin ) | 
						
							| 23 | 22 | exlimivv |  |-  ( E. u E. v z = <. u , v >. -> `' { z } e. Fin ) | 
						
							| 24 | 13 23 | sylbi |  |-  ( z e. ( _V X. _V ) -> `' { z } e. Fin ) | 
						
							| 25 |  | dfdm4 |  |-  dom { z } = ran `' { z } | 
						
							| 26 |  | dmsnn0 |  |-  ( z e. ( _V X. _V ) <-> dom { z } =/= (/) ) | 
						
							| 27 | 26 | biimpri |  |-  ( dom { z } =/= (/) -> z e. ( _V X. _V ) ) | 
						
							| 28 | 27 | necon1bi |  |-  ( -. z e. ( _V X. _V ) -> dom { z } = (/) ) | 
						
							| 29 | 25 28 | eqtr3id |  |-  ( -. z e. ( _V X. _V ) -> ran `' { z } = (/) ) | 
						
							| 30 |  | relcnv |  |-  Rel `' { z } | 
						
							| 31 |  | relrn0 |  |-  ( Rel `' { z } -> ( `' { z } = (/) <-> ran `' { z } = (/) ) ) | 
						
							| 32 | 30 31 | ax-mp |  |-  ( `' { z } = (/) <-> ran `' { z } = (/) ) | 
						
							| 33 | 29 32 | sylibr |  |-  ( -. z e. ( _V X. _V ) -> `' { z } = (/) ) | 
						
							| 34 | 33 10 | eqeltrdi |  |-  ( -. z e. ( _V X. _V ) -> `' { z } e. Fin ) | 
						
							| 35 | 24 34 | pm2.61i |  |-  `' { z } e. Fin | 
						
							| 36 |  | unfi |  |-  ( ( `' y e. Fin /\ `' { z } e. Fin ) -> ( `' y u. `' { z } ) e. Fin ) | 
						
							| 37 | 35 36 | mpan2 |  |-  ( `' y e. Fin -> ( `' y u. `' { z } ) e. Fin ) | 
						
							| 38 | 12 37 | eqeltrid |  |-  ( `' y e. Fin -> `' ( y u. { z } ) e. Fin ) | 
						
							| 39 | 38 | a1i |  |-  ( y e. Fin -> ( `' y e. Fin -> `' ( y u. { z } ) e. Fin ) ) | 
						
							| 40 | 2 4 6 8 11 39 | findcard2 |  |-  ( A e. Fin -> `' A e. Fin ) |