Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' |^|_ x e. A B |
2 |
|
relcnv |
|- Rel `' B |
3 |
|
df-rel |
|- ( Rel `' B <-> `' B C_ ( _V X. _V ) ) |
4 |
2 3
|
mpbi |
|- `' B C_ ( _V X. _V ) |
5 |
4
|
rgenw |
|- A. x e. A `' B C_ ( _V X. _V ) |
6 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. x e. A `' B C_ ( _V X. _V ) ) -> E. x e. A `' B C_ ( _V X. _V ) ) |
7 |
5 6
|
mpan2 |
|- ( A =/= (/) -> E. x e. A `' B C_ ( _V X. _V ) ) |
8 |
|
iinss |
|- ( E. x e. A `' B C_ ( _V X. _V ) -> |^|_ x e. A `' B C_ ( _V X. _V ) ) |
9 |
7 8
|
syl |
|- ( A =/= (/) -> |^|_ x e. A `' B C_ ( _V X. _V ) ) |
10 |
|
df-rel |
|- ( Rel |^|_ x e. A `' B <-> |^|_ x e. A `' B C_ ( _V X. _V ) ) |
11 |
9 10
|
sylibr |
|- ( A =/= (/) -> Rel |^|_ x e. A `' B ) |
12 |
|
opex |
|- <. b , a >. e. _V |
13 |
|
eliin |
|- ( <. b , a >. e. _V -> ( <. b , a >. e. |^|_ x e. A B <-> A. x e. A <. b , a >. e. B ) ) |
14 |
12 13
|
ax-mp |
|- ( <. b , a >. e. |^|_ x e. A B <-> A. x e. A <. b , a >. e. B ) |
15 |
|
vex |
|- a e. _V |
16 |
|
vex |
|- b e. _V |
17 |
15 16
|
opelcnv |
|- ( <. a , b >. e. `' |^|_ x e. A B <-> <. b , a >. e. |^|_ x e. A B ) |
18 |
|
opex |
|- <. a , b >. e. _V |
19 |
|
eliin |
|- ( <. a , b >. e. _V -> ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. a , b >. e. `' B ) ) |
20 |
18 19
|
ax-mp |
|- ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. a , b >. e. `' B ) |
21 |
15 16
|
opelcnv |
|- ( <. a , b >. e. `' B <-> <. b , a >. e. B ) |
22 |
21
|
ralbii |
|- ( A. x e. A <. a , b >. e. `' B <-> A. x e. A <. b , a >. e. B ) |
23 |
20 22
|
bitri |
|- ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. b , a >. e. B ) |
24 |
14 17 23
|
3bitr4i |
|- ( <. a , b >. e. `' |^|_ x e. A B <-> <. a , b >. e. |^|_ x e. A `' B ) |
25 |
24
|
eqrelriv |
|- ( ( Rel `' |^|_ x e. A B /\ Rel |^|_ x e. A `' B ) -> `' |^|_ x e. A B = |^|_ x e. A `' B ) |
26 |
1 11 25
|
sylancr |
|- ( A =/= (/) -> `' |^|_ x e. A B = |^|_ x e. A `' B ) |