Metamath Proof Explorer


Theorem cnvimamptfin

Description: A preimage of a mapping with a finite domain under any class is finite. In contrast to fisuppfi , the range of the mapping needs not to be known. (Contributed by AV, 21-Dec-2018)

Ref Expression
Hypothesis cnvimamptfin.n
|- ( ph -> N e. Fin )
Assertion cnvimamptfin
|- ( ph -> ( `' ( p e. N |-> X ) " Y ) e. Fin )

Proof

Step Hyp Ref Expression
1 cnvimamptfin.n
 |-  ( ph -> N e. Fin )
2 cnvimass
 |-  ( `' ( p e. N |-> X ) " Y ) C_ dom ( p e. N |-> X )
3 eqid
 |-  ( p e. N |-> X ) = ( p e. N |-> X )
4 3 dmmptss
 |-  dom ( p e. N |-> X ) C_ N
5 2 4 sstri
 |-  ( `' ( p e. N |-> X ) " Y ) C_ N
6 ssfi
 |-  ( ( N e. Fin /\ ( `' ( p e. N |-> X ) " Y ) C_ N ) -> ( `' ( p e. N |-> X ) " Y ) e. Fin )
7 1 5 6 sylancl
 |-  ( ph -> ( `' ( p e. N |-> X ) " Y ) e. Fin )