Metamath Proof Explorer


Theorem cnvin

Description: Distributive law for converse over intersection. Theorem 15 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Revised by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion cnvin
|- `' ( A i^i B ) = ( `' A i^i `' B )

Proof

Step Hyp Ref Expression
1 cnvdif
 |-  `' ( A \ ( A \ B ) ) = ( `' A \ `' ( A \ B ) )
2 cnvdif
 |-  `' ( A \ B ) = ( `' A \ `' B )
3 2 difeq2i
 |-  ( `' A \ `' ( A \ B ) ) = ( `' A \ ( `' A \ `' B ) )
4 1 3 eqtri
 |-  `' ( A \ ( A \ B ) ) = ( `' A \ ( `' A \ `' B ) )
5 dfin4
 |-  ( A i^i B ) = ( A \ ( A \ B ) )
6 5 cnveqi
 |-  `' ( A i^i B ) = `' ( A \ ( A \ B ) )
7 dfin4
 |-  ( `' A i^i `' B ) = ( `' A \ ( `' A \ `' B ) )
8 4 6 7 3eqtr4i
 |-  `' ( A i^i B ) = ( `' A i^i `' B )