| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvoprab.1 |  |-  ( a = <. x , y >. -> ( ps <-> ph ) ) | 
						
							| 2 |  | cnvoprab.2 |  |-  ( ps -> a e. ( _V X. _V ) ) | 
						
							| 3 | 1 | dfoprab3 |  |-  { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = { <. <. x , y >. , z >. | ph } | 
						
							| 4 | 3 | cnveqi |  |-  `' { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = `' { <. <. x , y >. , z >. | ph } | 
						
							| 5 |  | cnvopab |  |-  `' { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = { <. z , a >. | ( a e. ( _V X. _V ) /\ ps ) } | 
						
							| 6 |  | inopab |  |-  ( { <. z , a >. | a e. ( _V X. _V ) } i^i { <. z , a >. | ps } ) = { <. z , a >. | ( a e. ( _V X. _V ) /\ ps ) } | 
						
							| 7 | 2 | ssopab2i |  |-  { <. z , a >. | ps } C_ { <. z , a >. | a e. ( _V X. _V ) } | 
						
							| 8 |  | sseqin2 |  |-  ( { <. z , a >. | ps } C_ { <. z , a >. | a e. ( _V X. _V ) } <-> ( { <. z , a >. | a e. ( _V X. _V ) } i^i { <. z , a >. | ps } ) = { <. z , a >. | ps } ) | 
						
							| 9 | 7 8 | mpbi |  |-  ( { <. z , a >. | a e. ( _V X. _V ) } i^i { <. z , a >. | ps } ) = { <. z , a >. | ps } | 
						
							| 10 | 5 6 9 | 3eqtr2i |  |-  `' { <. a , z >. | ( a e. ( _V X. _V ) /\ ps ) } = { <. z , a >. | ps } | 
						
							| 11 | 4 10 | eqtr3i |  |-  `' { <. <. x , y >. , z >. | ph } = { <. z , a >. | ps } |