Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' R |
2 |
1
|
a1i |
|- ( R e. PosetRel -> Rel `' R ) |
3 |
|
cnvco |
|- `' ( R o. R ) = ( `' R o. `' R ) |
4 |
|
pstr2 |
|- ( R e. PosetRel -> ( R o. R ) C_ R ) |
5 |
|
cnvss |
|- ( ( R o. R ) C_ R -> `' ( R o. R ) C_ `' R ) |
6 |
4 5
|
syl |
|- ( R e. PosetRel -> `' ( R o. R ) C_ `' R ) |
7 |
3 6
|
eqsstrrid |
|- ( R e. PosetRel -> ( `' R o. `' R ) C_ `' R ) |
8 |
|
psrel |
|- ( R e. PosetRel -> Rel R ) |
9 |
|
dfrel2 |
|- ( Rel R <-> `' `' R = R ) |
10 |
8 9
|
sylib |
|- ( R e. PosetRel -> `' `' R = R ) |
11 |
10
|
ineq2d |
|- ( R e. PosetRel -> ( `' R i^i `' `' R ) = ( `' R i^i R ) ) |
12 |
|
incom |
|- ( `' R i^i R ) = ( R i^i `' R ) |
13 |
11 12
|
eqtrdi |
|- ( R e. PosetRel -> ( `' R i^i `' `' R ) = ( R i^i `' R ) ) |
14 |
|
psref2 |
|- ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) ) |
15 |
|
relcnvfld |
|- ( Rel R -> U. U. R = U. U. `' R ) |
16 |
8 15
|
syl |
|- ( R e. PosetRel -> U. U. R = U. U. `' R ) |
17 |
16
|
reseq2d |
|- ( R e. PosetRel -> ( _I |` U. U. R ) = ( _I |` U. U. `' R ) ) |
18 |
13 14 17
|
3eqtrd |
|- ( R e. PosetRel -> ( `' R i^i `' `' R ) = ( _I |` U. U. `' R ) ) |
19 |
|
cnvexg |
|- ( R e. PosetRel -> `' R e. _V ) |
20 |
|
isps |
|- ( `' R e. _V -> ( `' R e. PosetRel <-> ( Rel `' R /\ ( `' R o. `' R ) C_ `' R /\ ( `' R i^i `' `' R ) = ( _I |` U. U. `' R ) ) ) ) |
21 |
19 20
|
syl |
|- ( R e. PosetRel -> ( `' R e. PosetRel <-> ( Rel `' R /\ ( `' R o. `' R ) C_ `' R /\ ( `' R i^i `' `' R ) = ( _I |` U. U. `' R ) ) ) ) |
22 |
2 7 18 21
|
mpbir3and |
|- ( R e. PosetRel -> `' R e. PosetRel ) |