Step |
Hyp |
Ref |
Expression |
1 |
|
dfrel6 |
|- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
2 |
1
|
biimpi |
|- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
3 |
2
|
dmeqd |
|- ( Rel R -> dom ( R i^i ( dom R X. ran R ) ) = dom R ) |
4 |
2
|
rneqd |
|- ( Rel R -> ran ( R i^i ( dom R X. ran R ) ) = ran R ) |
5 |
3 4
|
xpeq12d |
|- ( Rel R -> ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) = ( dom R X. ran R ) ) |
6 |
5
|
ineq2d |
|- ( Rel R -> ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) = ( S i^i ( dom R X. ran R ) ) ) |
7 |
6
|
sseq2d |
|- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) ) ) |
8 |
|
relxp |
|- Rel ( dom R X. ran R ) |
9 |
|
relin2 |
|- ( Rel ( dom R X. ran R ) -> Rel ( R i^i ( dom R X. ran R ) ) ) |
10 |
|
relssinxpdmrn |
|- ( Rel ( R i^i ( dom R X. ran R ) ) -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> ( R i^i ( dom R X. ran R ) ) C_ S ) ) |
11 |
8 9 10
|
mp2b |
|- ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> ( R i^i ( dom R X. ran R ) ) C_ S ) |
12 |
2
|
sseq1d |
|- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ S <-> R C_ S ) ) |
13 |
11 12
|
bitrid |
|- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom ( R i^i ( dom R X. ran R ) ) X. ran ( R i^i ( dom R X. ran R ) ) ) ) <-> R C_ S ) ) |
14 |
7 13
|
bitr3d |
|- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) |