Metamath Proof Explorer


Theorem cnvref5

Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019)

Ref Expression
Assertion cnvref5
|- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) )

Proof

Step Hyp Ref Expression
1 ssrel3
 |-  ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x _I y ) ) )
2 ideqg
 |-  ( y e. _V -> ( x _I y <-> x = y ) )
3 2 elv
 |-  ( x _I y <-> x = y )
4 3 imbi2i
 |-  ( ( x R y -> x _I y ) <-> ( x R y -> x = y ) )
5 4 2albii
 |-  ( A. x A. y ( x R y -> x _I y ) <-> A. x A. y ( x R y -> x = y ) )
6 1 5 bitrdi
 |-  ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) )