Description: Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvref5 | |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrel3 | |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x _I y ) ) ) |
|
2 | ideqg | |- ( y e. _V -> ( x _I y <-> x = y ) ) |
|
3 | 2 | elv | |- ( x _I y <-> x = y ) |
4 | 3 | imbi2i | |- ( ( x R y -> x _I y ) <-> ( x R y -> x = y ) ) |
5 | 4 | 2albii | |- ( A. x A. y ( x R y -> x _I y ) <-> A. x A. y ( x R y -> x = y ) ) |
6 | 1 5 | bitrdi | |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) |