Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvresid | |- `' ( _I |` A ) = ( _I |` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi | |- `' _I = _I |
|
| 2 | 1 | eqcomi | |- _I = `' _I |
| 3 | funi | |- Fun _I |
|
| 4 | funeq | |- ( _I = `' _I -> ( Fun _I <-> Fun `' _I ) ) |
|
| 5 | 3 4 | mpbii | |- ( _I = `' _I -> Fun `' _I ) |
| 6 | funcnvres | |- ( Fun `' _I -> `' ( _I |` A ) = ( `' _I |` ( _I " A ) ) ) |
|
| 7 | imai | |- ( _I " A ) = A |
|
| 8 | 1 7 | reseq12i | |- ( `' _I |` ( _I " A ) ) = ( _I |` A ) |
| 9 | 6 8 | eqtrdi | |- ( Fun `' _I -> `' ( _I |` A ) = ( _I |` A ) ) |
| 10 | 2 5 9 | mp2b | |- `' ( _I |` A ) = ( _I |` A ) |