Description: Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvresrn | |- ( `' R |` ran R ) = `' R  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rn | |- ran R = dom `' R  | 
						|
| 2 | 1 | reseq2i | |- ( `' R |` ran R ) = ( `' R |` dom `' R )  | 
						
| 3 | relcnv | |- Rel `' R  | 
						|
| 4 | dfrel5 | |- ( Rel `' R <-> ( `' R |` dom `' R ) = `' R )  | 
						|
| 5 | 3 4 | mpbi | |- ( `' R |` dom `' R ) = `' R  | 
						
| 6 | 2 5 | eqtri | |- ( `' R |` ran R ) = `' R  |