Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvsn0 | |- `' { (/) } = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 | |- dom { (/) } = ran `' { (/) } |
|
2 | dmsn0 | |- dom { (/) } = (/) |
|
3 | 1 2 | eqtr3i | |- ran `' { (/) } = (/) |
4 | relcnv | |- Rel `' { (/) } |
|
5 | relrn0 | |- ( Rel `' { (/) } -> ( `' { (/) } = (/) <-> ran `' { (/) } = (/) ) ) |
|
6 | 4 5 | ax-mp | |- ( `' { (/) } = (/) <-> ran `' { (/) } = (/) ) |
7 | 3 6 | mpbir | |- `' { (/) } = (/) |