Step |
Hyp |
Ref |
Expression |
1 |
|
tsrps |
|- ( R e. TosetRel -> R e. PosetRel ) |
2 |
|
cnvps |
|- ( R e. PosetRel -> `' R e. PosetRel ) |
3 |
1 2
|
syl |
|- ( R e. TosetRel -> `' R e. PosetRel ) |
4 |
|
eqid |
|- dom R = dom R |
5 |
4
|
istsr |
|- ( R e. TosetRel <-> ( R e. PosetRel /\ ( dom R X. dom R ) C_ ( R u. `' R ) ) ) |
6 |
5
|
simprbi |
|- ( R e. TosetRel -> ( dom R X. dom R ) C_ ( R u. `' R ) ) |
7 |
4
|
psrn |
|- ( R e. PosetRel -> dom R = ran R ) |
8 |
1 7
|
syl |
|- ( R e. TosetRel -> dom R = ran R ) |
9 |
8
|
sqxpeqd |
|- ( R e. TosetRel -> ( dom R X. dom R ) = ( ran R X. ran R ) ) |
10 |
|
psrel |
|- ( R e. PosetRel -> Rel R ) |
11 |
1 10
|
syl |
|- ( R e. TosetRel -> Rel R ) |
12 |
|
dfrel2 |
|- ( Rel R <-> `' `' R = R ) |
13 |
11 12
|
sylib |
|- ( R e. TosetRel -> `' `' R = R ) |
14 |
13
|
uneq2d |
|- ( R e. TosetRel -> ( `' R u. `' `' R ) = ( `' R u. R ) ) |
15 |
|
uncom |
|- ( `' R u. R ) = ( R u. `' R ) |
16 |
14 15
|
eqtr2di |
|- ( R e. TosetRel -> ( R u. `' R ) = ( `' R u. `' `' R ) ) |
17 |
6 9 16
|
3sstr3d |
|- ( R e. TosetRel -> ( ran R X. ran R ) C_ ( `' R u. `' `' R ) ) |
18 |
|
df-rn |
|- ran R = dom `' R |
19 |
18
|
istsr |
|- ( `' R e. TosetRel <-> ( `' R e. PosetRel /\ ( ran R X. ran R ) C_ ( `' R u. `' `' R ) ) ) |
20 |
3 17 19
|
sylanbrc |
|- ( R e. TosetRel -> `' R e. TosetRel ) |