| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnv0 |
|- `' (/) = (/) |
| 2 |
|
cnvco |
|- `' ( (/) o. A ) = ( `' A o. `' (/) ) |
| 3 |
1
|
coeq2i |
|- ( `' A o. `' (/) ) = ( `' A o. (/) ) |
| 4 |
|
co02 |
|- ( `' A o. (/) ) = (/) |
| 5 |
2 3 4
|
3eqtri |
|- `' ( (/) o. A ) = (/) |
| 6 |
1 5
|
eqtr4i |
|- `' (/) = `' ( (/) o. A ) |
| 7 |
6
|
cnveqi |
|- `' `' (/) = `' `' ( (/) o. A ) |
| 8 |
|
rel0 |
|- Rel (/) |
| 9 |
|
dfrel2 |
|- ( Rel (/) <-> `' `' (/) = (/) ) |
| 10 |
8 9
|
mpbi |
|- `' `' (/) = (/) |
| 11 |
|
relco |
|- Rel ( (/) o. A ) |
| 12 |
|
dfrel2 |
|- ( Rel ( (/) o. A ) <-> `' `' ( (/) o. A ) = ( (/) o. A ) ) |
| 13 |
11 12
|
mpbi |
|- `' `' ( (/) o. A ) = ( (/) o. A ) |
| 14 |
7 10 13
|
3eqtr3ri |
|- ( (/) o. A ) = (/) |