Description: Composition with the empty set. Theorem 20 of Suppes p. 63. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | co02 | |- ( A o. (/) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( A o. (/) ) |
|
| 2 | rel0 | |- Rel (/) |
|
| 3 | br0 | |- -. x (/) z |
|
| 4 | 3 | intnanr | |- -. ( x (/) z /\ z A y ) |
| 5 | 4 | nex | |- -. E. z ( x (/) z /\ z A y ) |
| 6 | vex | |- x e. _V |
|
| 7 | vex | |- y e. _V |
|
| 8 | 6 7 | opelco | |- ( <. x , y >. e. ( A o. (/) ) <-> E. z ( x (/) z /\ z A y ) ) |
| 9 | 5 8 | mtbir | |- -. <. x , y >. e. ( A o. (/) ) |
| 10 | noel | |- -. <. x , y >. e. (/) |
|
| 11 | 9 10 | 2false | |- ( <. x , y >. e. ( A o. (/) ) <-> <. x , y >. e. (/) ) |
| 12 | 1 2 11 | eqrelriiv | |- ( A o. (/) ) = (/) |